

Expected vacuum performance in CMS

Adriana Rossi AT/VAC

- CMS geometrical layout
- Vacuum calculations assumptions and parameters
- Vacuum stability results
- Residual gas density results
- Summary and conclusions
- Pure gas injection
- Baking procedure

CMS layout

• Beam pipe between sector valves

- NEG coating except bellows and pumping ports
- Approximated to cylinders

Lumped pumps

- Sputter Ion Pumps at ~ ± 13.3 m from IP: 3 x8 l/s nominal. (the size of the pump fits within the available space in the experiment)
- Sputter Ion Pumps at the two sides of TAS: 75 l/s nominal. (~ ± 18.87 m and ± 21.74 m from IP)

Geometry for calculations

- Section between 2 cold magnets + Q1
- Inner diameter of TOTEM pipe = Ø50 mm
- Pipe between 16.6 and 18.6 m from IP replaced with Ø56 mm (modified to reduce RF losses)

Assumptions and parameters

• Synchrotron radiation

Flux to the wall assumed uniform along chamber

- ~ 5.10¹⁵ photons/m/s in experimental area [FZ], ε_c ~ 12eV
- ~ 10¹⁶ photons/m/s in LSS, ε_c ~ 12eV
- Photoelectrons with energy at wall ~ 100eV [AR]
- 2 operation periods considered when electron cloud can be neglected [VB] (physics)
 - machine start up $> 7 \text{ TeV} \sim 3.10^{10} \text{ protons/bunch (below electron cloud threshold), 25ns bunch spacing}$
 - after machine conditioning > 7 TeV, nominal beam intensity $\sim 1.15 \cdot 10^{11}$ protons/bunch, 25ns bunch spacing
- **Ions from residual gas ionization** Ion energy
 - experimental area ~ 500 eV except central region (± 6 m from IP) due to detector magnetic field
 - ~ 300eV in LSS

NEG coated sections: activated to 200°C for 24h

- $\eta_i = 1/10$ baked Cu surface, η_e , η_{ph} from measurements
- No η reduction during machine conditioning
- Pumping reduced $1/10 H_2$, 1/3 CO and CO_2 after machine conditioning

• Bellows and pumping ports: baked Cu at room temperature

- η_{ph} reduced 1/100 by photon during start-up
 + 1/100 by electrons during machine conditioning (scrubbing period)
- η_e only reduced 1/100 by electrons during machine conditioning
- η_i only reduced 1/100 by electrons during machine conditioning

• Superconductive magnets: unbaked Cu

- η_{ph} reduced 1/10 by photon during start-up
 + 1/10 by electrons during machine conditioning
- η_e only reduced 1/10 by electrons during machine conditioning
- η_i only reduced 1/10 by electrons during machine conditioning

Vacuum stability

- Critical current = pressure runaway.
- I_c > ultimate current (0.85 A) x 2 beams x 2 = 3.4 A

Vacuum stability

- Critical current with reduced NEG pumping speed to simulate partial or total saturation of the surface
- With and without pumps @ 13.3 m to simulate failure

NEG pumping	Pumps @ 13.3 m	Critical current	Max. stored current (A per beam)	Pre-shutdown re- activation
1 %	yes	22.1	> 0.85 (ultimate)	not required
1 %	no	9.4	**	**
0 %	yes	1.8	0.45 (0.56 nominal)	required ??
0 %	no	0.6	0.15	required

Vacuum stability

- Critical current with reduced NEG pumping speed to simulate partial or total saturation of the surface
- With and without pumps @ 13.3 m to simulate failure.

- Considering that if ion pumps @ ±13.3 m fail
 - Stored LHC current < 3 w.r.t. nominal
 - NEG reactivation time consuming (detectors opening)
 - Ultra-pure gas injection (< few tens of ppb impurity) procedure is delicate
- and that neon or krypton (not pumped by NEG)
 - Ne gas injected to bring beam pipe to atmospheric pressure
 - Kr (in very small quantities) released from NEG during activation
 - Cannot be pumped by turbo-molecular pumps < 10⁻¹⁰ Torr
 - More ion pumps = lower the residual pressure
 and the higher the capacity
- it is highly recommended to keep these pumps

NO baking = zero pumping + higher desorption NOT possible

• Gas expected in a baked UHV system

- Hydrogen (H₂)
- Methane (CH₄)
- Carbon monoxide (CO)
- Carbon dioxide (CO2)
- Hydrogen equivalent density: sum of gas densities weighted by total beam-gas scattering cross section (σ_{gas})

$$n_{H_2 equiv.} = n_{H_2} + \frac{\sigma_{CH_4}}{\sigma_{H_2}} n_{CH_4} + \frac{\sigma_{CO}}{\sigma_{H_2}} n_{CO} + \frac{\sigma_{CO_2}}{\sigma_{H_2}} n_{CO_2}$$

A.Rossi AT/VAC

Accelerator Technology Department After machine conditioning: comparison between different NEG pumping

Accelerator Technology Department After machine conditioning: comparison between different NEG pumping

Accelerator Technology Department After machine conditioning: comparison between different NEG pumping

LSS 5 @ machine start-up

Distance from the interaction point (m)

LSS 5 after machine conditioning

Distance from the interaction point (m)

- New CMS-TOTEM beam pipe geometry where the pipe enlargement between ~ 16.6 and ~ 18.6 m from the IP
- The vacuum is stable even if the NEG pump saturates to 1/100 of its initial pumping speed
 - If the NEG is completely saturated, stored current close to nominal value
 - If the ion pumps @ ±13.3 m fail, the stored current in the LHC will have to be limited further by a factor of > 3
 - It is strongly recommended to keep the pumps
- The density profile is presented for the 2808 bunch-filling scheme
- The resultant density is higher in the region close to the modified geometry, but is understood not to be detrimental in terms of background to the experiment

References

[VB] V.Baglin, Chamonix XII, 2003.

[AR] A.Rossi and N.Hilleret, LHC Project Report 674

[FZ] F.Zimmermann and A.Rossi, LHC Project Report 675

These results are published in: A. Rossi, EDMS : 536503 (AT-VAC Technical Note 04-15)

Pure gas injection

starting time	duration	activity
01/07/07 8:00	2h	transport of equipment (including bake-out)
01/07/07 10:00	2h	connection of flanges, electronics, bake-out, bottle, valves
01/07/07 12:00	1h	leak detection
01/07/07 13:00	2d	system baking + cartridge activation
03/07/07 13:00	1h	check gas quality
03/07/07 14:00	2h	injection (0.1 l/s)
	56h	
	2h	pumping
	4h	dismantling + transport

Bake-out: general procedure

A.Rossi AT/VAC