Background driven SiD design decisions

Takashi Maruyama

Backgrounds and Issues

- Pairs
 - Beam pipe design
 - LumiCal, BeamCal acceptance and design
 - Mask design
 - Occupancy
 - Neutrons in VXD
 - Power load in QD0/QDEX cryostat
- Sync radiations
 - Apertures
 - Mask design
 - Power load in QD0/QDEX cryostat
- Disrupted beam, beamstrahlung photons, radiative Bhabhas
 - Extraction line apertures
 - Beam loss in extraction line and background in diagnostic systems
 - Power load in QD0/QDEX cryostat
 - Neutrons from the beam dump
- $\gamma\gamma \rightarrow$ hadrons/ $\mu\mu/\tau\tau$
 - Dominant background in r>10 cm
 - Occupancy
 - BeamCal design, veto efficiency
- Beam gas
 - Vacuum requirement
 - Occupancy
- Muon production
 - Occupancy in muon system

Current Beam pipe is not compatibe with the Low P or High Lumi options.

500 GeV Low P + 5 Tesla

500 GeV High Lum + 5 Tesla

R= 1.2 cm \rightarrow 1.5 cm (Low P), and R= 1.2 cm \rightarrow 1.8 cm (High Lumi).

Pair distribution at Z = 168 cm

- Beam parameters Nominal, Low Q, High Y, Low P, High Lumi
- Solenoid field strength 5 Tesla vs. 4 Tesla
- Crossing angle (14 mrad) + DID/ANTI-DID

X (cm)

Pair Radius in cm at Z=168 cm

	4 Tesla			5 Tesla		
	ANTI-DID	NO DID	DID	ANTI-DID	NO DID	DID
Nominal	5.2 / <mark>4.7</mark>	5.1 / <mark>5.5</mark>	5.8 / <mark>6.5</mark>	4.7 / <mark>4.1</mark>	4.4 / 5.1	5.3 / <mark>6.1</mark>
Low Q	4.7 / 4.2	4.4 / 5.1	5.3 / <mark>6.0</mark>	4.2 / 3.8	3.8 / <mark>4.6</mark>	4.8 / <mark>5.6</mark>
High Y	4.6 / <mark>4.2</mark>	4.6 / <mark>5.1</mark>	5.5 / <mark>6.0</mark>	4.3 / 3.9	4.1 / <mark>4.6</mark>	4.9 / <mark>5.7</mark>
Low P	6.3 / <mark>6.0</mark>	6.2 / <mark>6.8</mark>	6.8 / <mark>7.6</mark>	5.7 / <mark>5.3</mark>	5.5 / <mark>6.1</mark>	6.4 / <mark>7.0</mark>
High Lumi	7.0 / <mark>6.6</mark>	6.8 / 7.3	7.4 / <mark>8.2</mark>	6.2 / <mark>5.9</mark>	6.1 / <mark>6.7</mark>	6.7 / <mark>7.5</mark>

Radius in black is measured from solenoid axis (x,y) = (0., 0.). Radius in red is measured from extraction line (x,y) = (-1.176 cm, 0.)

LumiCal acceptance

- Inner radius of LumiCal can be smaller.
 - Nominal + 5 Tesla: 8.1 cm \rightarrow 5.0 cm (30 mrad)
 - -4 Tesla $\rightarrow +3$ mrad $\rightarrow 5.5$ cm (33 mrad)
 - Low P \rightarrow +6 mrad \rightarrow 6.0 cm (36 mrad)
 - High Lumi \rightarrow +9 mrad \rightarrow 6.5 cm (39 mrad)
- Centering LumiCal on the extraction line has an advantage only when ANTI-DID is used.
- New SiD LumiCal is compatible with:
 - Nominal + 5 Tesla
 - Nominal + 4 Tesla
 - Low P + 5 Tesla

New SiD Geometry

- LumiCal
 - Z=156.75 168 cm
 - R_{inside}=6cm
- Beampipe
 - Original 43 mrad cone + cylinder
- BeamCal
 - Study background as a function of BeamCal z
- M1 geometry is the same.

Tracker Hits vs. BeamCal DZ

Si Tracker photons

- VXD hits
 - No effects from LumiCal/BeamCal changes
- Si Tracker hits
 - Less photons (20%) due to smaller radius LumiCal
 - # photons increases by moving the BeamCal forward.
 - But the rate is acceptable if $\delta Z < 30$ cm.

10

Is M2 needed?

- NLC era simulation showed at least 6 cmthick Tungsten is required to suppress low energy photons.
- Tungsten \rightarrow Air does not increase tracker background.
- Does the muon system care about low energy photons?
- Yoke gaps may be stuff with heavy metal at small radius.

Power load in QD0/QDEX Cryostat is ~100 mW

Apertures for Sync Radiations

Collimation depth

- First extraction quad constrains the collimation depth.
- Consistent with Frank Jackson (BILCW07)
 - $11.9\sigma_x 70.7\sigma_y$ in red lines
- Collimation depth cannot be defined by just two numbers.— The elliptical curve in (nx, ny) must be used.
- Does the collimation in the collimation section actually achieve this collimation depth?
- Need to study re-population outside the collimation depth.

Do we need a double-bounce Mask?

At SLD/SLC, SR was the problem

- Conical mask completely shadowed the beam pipe and VXD.
- Mask was designed so that photons need at least TWO bounces to hit VXD.

Neutrons from the Beam Dump

Neutrons in VXD (FLUKA)

Neutrons from pairs

	Hits/cm ² /BX	Hits/cm ² /1x10 ⁷ sec
No DID	(3.6 ± 0.2) x10 ⁻³	5.0x10 ⁸
Anti-DID	(2.4 ± 0.2) x10 ⁻³	3.4x10 ⁸
DID	$(4.1 \pm 0.2) \times 10^{-3}$	5.7x10 ⁸

Neutrons from radiative Bhabhas

	Hits/cm ² /BX	Hits/cm ² /1x10 ⁷ sec
No DID	$(1.6 \pm 0.4) \times 10^{-4}$	0.22x10 ⁸
Anti-DID	(0.3 ± 0.2) x10 ⁻⁴	0.04x10 ⁸
DID	$(2.0 \pm 0.6) \times 10^{-4}$	0.27x10 ⁸

Neutron origins

- Neutrons that reach the vertex detector are mostly generated in the BeamCal.
- Anti-DID can reduce the neutron flux.
- Different L* design should not affect the neutron flux.