

ILC BDS

Detector Tolerances to Background and Reduced Muon Shielding

Nikolai Mokhov

Fermilab

WG-D Meeting August 14, 2007

BACKGROUNDS AND DETECTOR PERFORMANCE

Two sources

- 1. <u>IP backgrounds</u>: Particles originated from the interaction point (IP) beam-beam interaction products and collision remnants.
- 2. <u>Machine backgrounds</u>: Unavoidable bilateral irradiation by particle fluxes from the beamline components and accelerator tunnel.

Backgrounds affect ILC detector performance in three major

ways:

- Detector component radiation aging and damage.
- Reconstruction of background objects (e.g., tracks) not related to products of e⁺e⁻ collisions !!!
- Deterioration of detector resolution (e.g., jets energy resolution due to extra energy from background hits).

DETECTOR TOLERANCES

Subdetector	Tolerance criterion		
Vertex detector	Rad. damage (worst-case: CCD's) : ∫ < 3-10 × 10 ⁹ n cm ⁻²		
and/or	Occupancy (pattern recognition): < 1% (2-d hit density)		
Silicon Tracker	Occupancy (pile-up): ≤ 1 hit / channel ("buffered")		
Time Projection	Occupancy (pattern recognition): < 1% (3-d density)?		
Chamber	<i>Experts disagree on impact on reconstruction + space charge</i>		

Subdetector	Granularity	Sensitivity window	Fract'l sensitivity	
Vertex detector (Layer 1)	20 μ x 20 μ pixels = 2500 pixels/mm²	50 us	Chgd trks: ε = 1.0 (4 pixls) γ: ε = 0.02 (4 pixels)	
TPC	1.5 10 ⁶ pads x 10 ³ time buckets = 1.5 10 ⁹ voxels	(~ 150 bunches)	Chgd trks: ε = 1.0 γ: ε = 0.02 n: ε = 0.01 μ: ε = 1.0	

By Witold Kozanecki

1% generic occupancy limit (per train or per SW) implying x10 safety factor

Background tolerance levels

^(*) As per R. Settles et. al., TESLA St Malo workshop Detector-specific data from T. Maruyama + detector response to MDI questions, Aug 05.

Limits are expressed in # particles either per sensitivity window [SW] (typically 50 μ s \approx 150 bunches in VXD/TPC), or per bunch train [tr]

Subdetector	Charged hits	γ	n (~ 1 MeV)	Model
Vtx detector (L1)	6 mm ⁻² / SW 100 mm ⁻² tr ⁻¹	300 mm⁻² /SW	3 × 10 ⁷ mm ⁻² 10 ⁸ mm ⁻²	1 % generic GLD
Si tracker	Pile-up: 0.2 / 1.0 mm ⁻² tr ⁻¹	Pile-up: 10/50 mm ⁻² tr ⁻¹		SiD: analog/digital
TPC (/SW)	1.5 x 10 ⁷ voxels ≈ 2.5 - 5 10³ tracks	1.25 × 10 ⁶ γ	2.5 x 10 ⁷ n	1 % generic

<u>Notes</u>

By Witold Kozanecki

- 1. No generic answers depend strongly on subdetector technology
- 2. Need to clarify impact of TPC occupancy on track reco efficiency & space charge
- 3. Only rough estimates so far. Real answer needs detailed simulations, pattern recognition studies, space charge, understanding of background distribution....
- 4.1% may sound overconservative...but we need ~ x 10 safety factor!

BACKGROUND TOLERABLE LIMITS SUMMARY

Denisov, Mokhov, Striganov, Kostin, Tropin (2006, JINST-1-P12003) <u>Calorimeter, tracker and vertex</u> detectors: in smallest element, occupancy $\leq 1\%$.

To avoid *pattern recognition* problem in tracker, hit density from charged particles should be ≤ 0.2 hit/cm²/bunch.

To avoid *pile-up* problem (from previous BX !) in tracker, hit density from charged particles should be ≤ 0.2 hit/mm²/train.

<u>**Muon system:**</u> the RPCs (sensitive media) need 1 ms to recharge a 1 cm² area around the avalanche, therefore, the hit rate in excess of 100 Hz/cm² would result in an unmanageable dead time. With typical 80 sensitive layers in a Muon Endcap, it corresponds to a muon flux at its entrance of about 1 $\mu/cm^2/s$.

Hit Rates in Detector Subsystems

- Machine-related background with and without spoilers -STRUCT+MARS15 + SLIC. Here - only from e⁺ beam.
- 2. IP-related background radiative Bhabas from beambeam interaction and synchrotron radiation from beam. Guineapig + GEANT3
- 3. *e+e-* events at 500 GeV- PYTHIA + SLIC

WG-D Meeting, Aug 15, 2007

Per e⁺e⁻ event

TUNNEL MUON SPOILERS: 9+18 m or 5 m Walls

0.6m

Muon Flux Isocontours

Particle Fluxes (cm⁻²s⁻¹) at SiD from e⁺ BDS

Particle Energy Spectra (per bunch) at SiD from e⁺ BDS

Detector Background Tolerances and Shielding - N.V. Mokhov