

Simulation of Neutron Backgrounds in the ILC Extraction Line Beam Dump

Siva Darbha

Supervisors: Lewis Keller and

Takashi Maruyama

Extraction Line and Water Dump

FLUKA was used for all simulations, ROOT for analysis and some particle generation

Fluence at IP

At A-A' (on the surface of the dump)

- Flux was treated as isotropic from -1 < cosθ < -0.99
- Flux for 1.5 cm radius scoring plane at z=0 was found from flux in 2 m radius scoring plane

Scoring plane at z=0

Particle Biasing

- Three types of biasing were used:
 - 1. Leading particle biasing
 - simulating a full EM shower requires long CPU time
 - to save time, take only the most energetic secondary and remove all others
 - applied to e⁺,e⁻, and γ's < 2.5 GeV
 - 2. Photonuclear interaction length

$$\gamma A \rightarrow n + X \qquad (\sigma, \ell)$$

- #n produced proportional to ℓσ
- σ was increased by a factor of 50
- 'weight' associated with each n produced from this was decreased by a factor of 50 to compensate

Particle Biasing (continued)

3. Splitting/Russian roulette

- Dump divided into 10 regions
- Each region given a factor of 2 larger importance
- As e⁺, e⁻, or γ crosses

 a boundary, their
 number is increased or
 decreased on average
 by the ratio of
 importances on either
 side of the boundary
- 'weight' is adjusted accordingly

Computation Time

6000 incident e			n total 'weight'		n total number	
Run #	Type of Bias	CPU time	At z=300m	At z=0	At z=300m	At z=0
1	None	23 h 35 min	82	2	82	2
2	LPB	1 h 36 min	102.9	0	87	0
3	Interaction length	6 h 46 min	103.4	0.7813	5008	49
4	Splitting/RR	6 h 22 min	96.40	1.085	16619	117

Fluence at IP

	n's/cm²/year at IP (z=0)			
	Mean (10 runs)	RMS		
No tunnel or collimator	8.33*10 ¹⁰	1.50*10 ¹⁰		
Collimator	3.73*10 ¹⁰	3.34*10 ¹⁰		
Tunnel and Collimator	3.65*10 ¹⁰	2.34*10 ¹⁰		

10¹⁰ n/cm² at the VXD would cause displacement damage to CCD Si detectors

However, not all neutrons that reach the IP will hit the inner detector

I Neutron Energy Distribution

 Information was gathered on the neutron distribution in the backward direction and was used to generate 10⁶ neutrons to study the real flux at the VXD

Detector

Initial position of n's

 n's randomly and uniformly distributed within the quadrupole bore

C-C'

CCD Si VXD with Be beampipe

Results: Fluence at VXD

 The BeamCal acts as a collimator for neutron backscattering from dump

 With the W BeamCal, the nominal fluence at Layer 1 of VXD is: 4.277*10⁸ n/cm²/year

1 MeV Neutron Equivalent Fluence

- However, the amount of displacement damage done to CCD Si detector by neutrons is a function of neutron energy
- When relative damage to Si is considered, normalized to 1 MeV, the fluence is:
 9.265*10⁸ n/cm²/year
- A value of 10¹⁰ n/cm² would damage the CCD Si detector by this measure
- The other fluences calculated in this study can be normalized similarly

BeamCal Radius Dependence

 Values are not normalized to 1 MeV equivalent fluence

Acknowledgements

- Takashi Maruyama and Lewis Keller
- Tom Markiewicz
- Nan Phinney
- Mario Santana