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e Extraction Line and Water Dump
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w Il PACMAN

FLUKA was used for all
simulations, ROOT for analysis
and some particle generation
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ilp Fluence at IP
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| Neutron Angular Distribution | ang
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At A-A’ (on the surface of the dump)

* Flux was treated as isotropic
from -1 < cosO < -0.99

* Flux for 1.5 cm radius scoring
plane at z=0 was found from
flux in 2 m radius scoring plane
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iln Particle Biasin
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* Three types of biasing were used:
1. Leading particle biasing
« simulating a full EM shower requires long CPU time

» to save time, take only the most energetic
secondary and remove all others

« applied to e*,e’, and y's < 2.5 GeV
2. Photonuclear interaction length

YVA—-n+X (0,

« #n produced proportional to /o

* O was increased by a factor of 50

« ‘weight’ associated with each n produced from this
was decreased by a factor of 50 to compensate



;!'l: Particle Biasing (continued)

3. Splitting/Russian roulette | | | ' k(cm) 10

 Dump divided into 10
regions

« Eachregion given a
factor of 2 larger ' 1
importance | e ‘

- Ase* e, orycrosses | — | | ’
a boundary, their [ // e |
number is increased or | 7| :7 “a
decreased on average | , |
by the ratio of
importances on either
S|d§ ofthe bo.undary 34 2 1

« ‘weight’ is adjusted
accordingy 30000.  30100.  30200.  30300.  30400.  30500.  30600.
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Computation Time

min

o
6000 incident e- n total ‘weight’ n total number
Run # | Type of CPU At Atz=0 |At At z=0
Bias time z=300m z=300m
1 None 23 h 35 |82 2 82 2
min
2 LPB 1h36 |102.9 0 87 0
min
3 Interaction |{6h46 |103.4 0.7813 | 5008 49
length min
4 Splitting/RR |6 h 22 |96.40 1.085 16619 117




iln Fluence at IP

"o
n’s/cm?/year at IP (z=0)
Mean (10 runs) RMS

No tunnel or 8.33*1010 1.50*1010
collimator

Collimator 3.73*1010 3.34*1010
Tunnel and 3.65*1010 2.34*1010
Collimator

109 n/cm? at the VXD would cause displacement damage to CCD Si
detectors

However, not all neutrons that reach the IP will hit the inner detector




;!.t: Neutron Energy Distribution

' Neutron Energy Distribution | energy
Entries 8141

F Mean 0.06039
30 RMS 0.05111

* Information was
gathered on the
neutron distribution in
the backward

10 MeV bins
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direction and was
used to generate 106 \/LowEnergy Neutron Distribution | energy

neutrons to study the i o gotis

" In 15t bin —
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Detector

All n’s were givena7 [ X (CmM)
mrad trajectory towards
the detector
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i Initial position of n’s

ial Distributi Xy ;
Spatial Distribution T T e n’s randomly
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ilr ccD si VXD with Be beampip
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il Results: Fluence at VXD
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« The BeamCal
acts as a
collimator for
neutron
backscattering
from dump

« With the W BeamCal, the nominal fluence at Layer 1 of

VXD is: 4.277*108 n/cm?/year
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| Neutrons at VXD Layer 1 | hist
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1 MeV Neutron Equivalent Fluence

However, the amount of
displacement damage done
to CCD Si detector by
neutrons is a function of
neutron energy

When relative damage to Si
IS considered, normalized to
1 MeV, the fluence is:
9.265*108 n/cm?/year

AN vinlhiin AF 4(\10 nlnmz var~ial
A vadliuc Ul 1V /70l vwuOul

damage the CCD Si
detector by this measure

The other fluences
calculated in this study can
be normalized similarly

~
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'-!L" BeamCal Radius Dependence

‘ Neutron Fluence at VXD | —— Layer 1 (=1.dcm
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