Major Components in ILC IR Hall Interchangeable Detectors

Cryogenic Block Diagram in ILC IR Hall

K. C. Wu - Brookhaven National Lab

8/29/07

Cryogenic Block Diagram with Detectors

K. C. Wu - Brookhaven National Lab

Possible Combination of Cryogenic Hardware

Issues associated with type and number of refrigeration hardware will be studied when system parameters and requirements become available.

Possible Moving Vacuum Pump to Surface Level to Eliminate Vibration

Room temperature vacuum pump typically consists of roots blower and a liquid ring pump. Usually, it is bulky due to large volume flow. A cold vacuum compressor could be used to increase pressure allowing vacuum pump to be moved to surface level

2 K Cooling Scheme for Magnets QD0, QF1

Magnet is cooled in He II at ~ 2 K, 1 bar Design capacity is 15 W

8/29/07

Basic Cooling Requirements for IR Magnets

- Keep magnet below 2.1 K at 1 bar
- Design for removing 15 W heat load
- Service Cryostat is installed at approximately 10 meter from the magnet
- Magnet and Service Cryostat are connected by a vacuum envelop which contains 6 lines.
- The largest line is 3 inch in diameter for 1 bar Helium II and is used to provide 2 K cooling and electrical connection
- "No" vibration should be introduced

Description of Service Cryostat

- Service Cryostat is used for interfacing Magnet with Cryogenic Distribution System, CDS or Liquefier
- 4 K Cooling is converted to Superfluid helium
- Service Cryostat consists of a 4.5 K liquid helium reservoir, a (4 – 2 K) JT heat exchanger, an 1.8 K Evaporator, and ~ 5 cryogenic valves
- Lead pot and ~ 10 current leads are not shown on the flow diagram

Detector and QD0 need to be moved by ~ 20 meters

Require ~ 50 m of Flexible Transfer lines between QD0 service cryostat and liquefier (or CDS)

QF1 and Crab Cavity do not move (Rigid Transfer Lines between service cryostat and liquefier (or CDS))

8/29/07

Other Cooling Requirements

Independent warmup or cooldown for each magnet?

Parker has scenario for common operation "must be vs may be independent"

Baseline Heat Loads

- Heat loads at 1.8 K, 4.5 K and 80 K for QD0 are
 - 15 W at 1.8 K
 - 30 W at 4.5 K
 - 500 W at 80 K
- Heat loads for QF1 are assumed to be the same as QD0 for the time being
- Total heat load for two sets of QD0 and QF1
 - 60 W at 1.8 K
 - 120 W at 4.5 K
 - 2000 W at 80 K

Survey of Flexible Lines End Cap (ATLAS) in 3 Different Positions

K. C. Wu - Brookhaven National Lab

Flexible Lines used on ATLAS (CERN)

LAr expansion vesse is UN2 heat exchangers regulation valve Doxes is interest poortion

Shielded Flexible Line in ISR (CERN) For Easy Installation or Moving?

Inner channel: 14 mm ID Annular channel: 34 mm ID, 51 mm OD 30 layers superinsulation, Bending radii: ~ 1 meter

~ 2.5 W, 4 K load for 50 meter length (with 4 - 120 K shield , not all at 120 K)

Shield load: ~ 170 W

For larger line (~ 46 mm ID) with 80 K shield, calculated heat loads are ~ 0.15 W/m for 4.5 K and 2.5 W/m for 80 K

Number of Cryogenic Lines

- Between Service Cryostat and Magnet 6 lines (The largest is ~ 3 inch in diameter)
- Between Cryogenic Distribution System and Service Cryostat - 6 or 7 lines
 - 5 Vacuum Jacketed
 - 1 to 2 non-jacketed
 - The length is on the order of 50 meters

Lines Between Service Cryostat and Magnet

- Main Line for transferring 2 K Heat Load at1 bar over 10 meters, containing bus and instrumentation wires inside
- 4 K Supply for Anti-Solenoid and Shield
- 4.5 K Shield Return
- ~ 80 K Shield Supply
- ~ 80 K Shield Return
- Cooldown Return
- Quench Vent located near Service Cryostat

Lines Between Service Cryostat (Service Cryostat) and Cryogenic Distribution System (Liquefier)

- 4 K Supply
- 4 K Return
- Low Pressure Return ~ 2 K (0.016 bar) (~ 1 inch inner diameter)
- 4.5 K (or Warm) Return
- ~ 80 K Shield Supply
- ~ 80 K Shield Return
- Warm Return for Cooldown
- Warm Return for Quench Vent
- Note: Warm lines maybe combined

Present Understanding

- Cryogenic lines (including jumper) will be welded in construction. No bayonets are planned T. Peterson
- SiD detector is used as an example for current study
- For operating purpose, it is desired to be able to move Magnet, Service Cryostat and associated Hardware for ~ 20 meters from beam center when magnet is cold – B. Parker
- The design should allow detector door to move without interfering with cryogenic hardware
- After the 1st detector is moved to the side, it is desirable to quickly move in a 2nd detector which contains cold magnets.

Comparison of Various Transfer Lines (does not include end connection)

Comparison of Published Heat Load					
Among Various Transfer Lines					
Temp.	Vendor 1	Vendor 1	Vendor 2	Vendor 3	Vendor 4
K	Rigid	Rigid	Rigid	Flexible	Flexible
	Unshielded	Shielded	Unshieldec	Unshielded	Shielded
Size	1.5" x 3"	1.5" x 3"	1.5" x 4"	1" x 3"	46 x 163
					mm
4.5	0.36	0.1	-	-	0.15
80	-	N.A.	0.54	0.4	2.5
	PHPK	PHPK	ACME	CRYOFAB	NEXANS

Need heat shield for 4.5 K application

Friction Factor is ~ 0.06 - 0.08 for flex line depending on the size