

Beam-Gas Bremsstrahlung Electrons Hitting Beyond the Final Doublet

Cut: Outside 10 mm at entrance to 1^{st} extraction line quad Average Energy = 100 GeV Origin is inside 200 m from the IP

Loss pts. of 150 random beam-gas brem. trajectories in the BDS using LP TURTLE

Scattering Rates, 10 nT

1500 m, "SLC" gas: 62% H_2 , 22% CO, 16% $CO_2 => X_0 = 5 \times 10^{13} \,\mathrm{m}$ @ 10 nT

•Compton scattering on thermal photons (irreducible): 1.1/bunch

•Beam-gas bremsstrahlung (α Z²): 2.9/bunch

•Coulomb (αZ^2):

•Moller (α Z): 0.3/bunch

Summary of Hits/bunch and Hits/160 bunches (TPC) - both beams, 10 nTorr

Hits/bunch Hits/160 bunches (TPC)

Hit	Beam-gas brem Bea		TLE gas brem rged)	TURTLE Beam-gas brem (photons)		TURTLE Coulomb (charged)	
Location	Hits	Hits	<e></e>	Hits	<e></e>	Hits	<e></e>
FD Prot. Coll. (13 m) x > 0.74 cm y > 0.45 cm Origin 0-800m from IP	0.22 35	0.17 27	235 GeV	0.056 9.0	~50 GeV	0.009	250 GeV
Inside F.D. (10 – 3.5 m) (QF1 to QD0) Origin 0-100m from IP	0.014 2.2	0.006	~100 GeV	0	-	0	-
IP region (± 3.5 m) (R > 1 cm at Z = 6.0 m) Origin 0-200m from IP	0.04 6.4	0.02 3.2	~100 GeV	0	-	0	-

GEANT3 simulations show that only hits in the IP region (± 3.5 m) cause problems for the vertex detector

What are the vacuum specs between the QD0's ? (where there is no room for pump installation)

- 1. We have seen that 1 nT out to 200 m is conservative, but near the IP, it could be one to two orders of magnitude higher from a bremsstrahlung standpoint. What about electro-production of hadrons?
- 2. Electro-production of hadrons in gas near the IP (± 3.5 m)

$$\sigma_{tot} \sim 2 \text{ mb} => \sim 5 \times 10^{-5} / \text{BX} @ 10 \text{ nT}$$

Lumonosity bkg.: gamma-gamma at $\mathcal{L}_{max} \sim 0.5/BX$

Therefore the near-IR pressure requirement is not determined by the beam-gas background rates

Summary for 10 nTorr:

- 1. Within the IP region there are 0.02 0.04 hits/bunch (3-6 hits TPC) at an average energy of about 100 GeV/hit originating 0–200 m from the IP. Therefore 1 nT from 0–200 m is conservative.
- 2. On the FD protection collimator there are 0.20 charged hits/bunch (33 hits TPC) at an average energy of about 240 GeV/hit and 0.06 photon hits/bunch (9 hits TPC) at an average energy of about 50 GeV/hit originating 0–800 m from the IP. Therefore 10 nT from 200–800 m.
- 3. <u>Beyond 800 m from the IP</u> the pressure could conceivably be at least an order of magnitude higher than 10 nT, pending look at BGB background in the Compton polarimeter and energy spectrometer.
- 4. Need feedback from the detector groups on the effect of these hit rates on their detectors.

Note: hits in the IP region are defined in slide 1