

Detector concept

Plenary introductory talk

IRENG07

Kurt Krempetz September 17, 2007

Global Design Effort

ILC INTERACTION REGION ENGINEERING DESIGN WORKSHOP

- The Detector Parameters have not been finalized.
- Little engineering effort been put into the design.
 - But an Engineering Group has been established.
- Share our current thoughts on the issues.
- Willing to be flexible but concerned about "boxing ourselves into a corner"
- Looking forward to progress at this Workshop.

SiD Engineering Team

• Engineers

ilc.

- ANL
 - Victor Guarino
- FNAL
 - Bob Wands
 - Joe Howell
 - Kurt Krempetz
 - Walter Jaskierny
- SLAC
 - Jim Krebs
 - Marco Oriunno
 - Wes Craddock
- RAL
 - Andy Nichols

Physicists

Bill Cooper

Marty Breidenbach Tom Markiewicz

Phil Burrows

General parameters

- Detector parameters
 - 12mX12mX12m
 - 10,000 tonnes not including Pacman (another 2000 tonnes)
 - 5 Tesla 5m clear bore Superconducting Magnet
 - Return Flux
 - Design goal; magnet field 1m outside the iron
 < 100 G

– Baseline Design for L*=3.664m

ilr

ΪĹ

General parameters with pacman's

Sub-System Parameters-Barrel

BARREL	Baseline Technology	Inner radius	Outer radius	Z max	Weight (tonnes)
Vertex detector	Pixel	1.4	6.1	6.25	<.001
Tracker SiD	Silicon strips	20.0	126.5	± 167.9	.1
EM calorimeter	Silicon/W	127.0	140.0	±180.0	65
Hadron calorimeter	RPCs/SS	141.0	250.0	± 277.2	380
Solenoid	5 Tesla	250.0	330.0	± 277.0	220
Muon chambers	RPCs/Fe	333.0	645.0	± 277.0	3050

.

Sub-System Parameters-Forward

SiD FORWARD	Baseline Technology	Inner Z	Outer Z	Outer radius	Weight (tonnes)
Vertex detector	Pixel	71.9	172.0	71.0	<.001
Tracker	Silicon strips	26.7	165.4	126.5	.05
EM calorimeter	Silicon/W	168.0	182.0	127.0	20
Hadron calorimeter	RPCs/SS	182.0	277.0	140.7	75
Muon chambers	RPCs/Fe	277.5	589.5	645.0	4000
LumCal	Silicon/W	170.0	183.0	19.0	.35
GamCal	Silicon/W				.3
BeamCal	Silicon/W	321.0	334.0	18.0	.15

General Safety Issues

- Radiation
 - Self Shielding Detector
- Fire Safety
 - No Flammable Gases
 - Halogen-free Cables
 - Smoke Sensor in all sub detectors
- Seismic Safety
 - Looking for guidance; Site dependent
- ODH Issues
 - Looking for guidance

Assembly- Possible Surface Scenario

- Solenoid tested to full field on surface
- Other Sub-systems are also constructed and tested on surface.
- Defines a surface building
 - -Roughly 24mX24mX24m
 - –500 tonnes crane (smaller hoists should also be available)

- Underground area is defined by Detector Maintenance and planned Upgrades and Repairs
- Access to Underground

-No disassembly

- Shaft 15m- 4100 tonnes lowered
- -Some disassembly
 - Shaft 9m- 500 tonnes lowered

Alignment

- Positioning accuracy needed for detector after it was moved to IP in push-pull operation
 – 1 to 2mm
- Final/fine adjustment done by a positioning system not yet designed.
 - Positions
 - Vertex Detector
 - Beam pipe
 - LumCal,GamCal and BeamCal
 - QDO

Possible Opening procedures

- on beamline
 - Need to access Electronics → End caps open
 2m
 - Roughly 16m total
 - Small Crane system (~5tons)
 - Time Duration → 20hrs
 - Power down magnet-4hrs
 - Open End Caps- 4hrs
 - Perform work- 4hrs
 - Close End Caps- 4hrs
 - Power up magnet- 4hrs

Opening procedures-On Beamline 2m End Cap Opening

Possible Opening procedures

- off beamline
 - Detector Motion → End caps open 2m
 - Frequently for Electronics maintenance
 - Detector Motion → End caps open 3m
 - Possible every 6 months for Vertex and Tracker maintenance
 - Possible every few years for Vertex Detector replacement
 - Time Duration for Opening or Closing \rightarrow about 1 week
 - Detector Motion → End caps open 6m
 - Possible every 5 years for Upgrades
 - Tracker Detector System
 - ECal Silicon Detectors
 - HCal RPC's
 - Muon RPC's
 - Crane System for above scenarios (~25 tons plus another smaller hoist)

Opening procedures-Off Beamline 3m End Cap Opening

Opening procedures-Off Beamline 6m End Cap Opening

Possible Opening procedures

- For Major Issues
 - Solenoid Repair
 - Absorber Plates Replacement
- Under Shaft
 - Safety issues maybe a problem
- off beam position
 - Crane System (~500 tons plus others smaller hoists)
 - Approximately twice the floor area

Preference for Stability of Underground Hall

- Settlement of Floor
 - <1-2 mm/Detector Exchange</p>
- Temperature
 - 21 Degrees C
 - Plus or minus 1 Degrees C variation with time
 - Plus or minus 3 Degrees C at different hall locations
- Dewpoint
 - < 12 Degrees C or 56% relative humidity</p>

Services & connections

- Most systems are envisioned to be directly connected to detector and travel with it
 - -solenoid power supply
 - -dump resistors (Water
 - Cooled~3mx3mx3m)
 - -electronic racks (~70 racks)

Services & Connections to Detector

Utility	Mode	Estimate	Provide	N condu Diamete
AC Power	480 VAC 3φ	430 KW	750 KW	3@10 cr
UPS Power	480 VAC 3φ	15 KW	30 KW	1@5 cm
LCW		350 lpm	500 lpm	2@10 cr
Chilled Water		244 lpm	500 lpm	2@10 cr
Instrument Air	~1 MPa	~100 lpm	~200 lpm	2@5 cm
Fiber Optics	72 fiber cables	3	5	5@1 cm
Helium	Quadraxial flex			1@10 cn
Total				~0.1 m ²

Summary

- Additional Workshop Talks Planned
 - Bob Wands-Field Mapping Calculations
 - Marco Oriunno- Platform Issues
 - Bill Cooper- SiD Beam Pipe Concepts
 - Jim Krebs- End Cap Concepts
 - Marty Breidenbach- Assembly Schemes
 - Wes Craddock-Water Cooled Dump Resistor
- Questions????