Studies at SLAC's ESA of the transverse kicks due to collimator wakefields

Stephen Molloy, IRENG07, SLAC, 18th Sept, 2007

Motivation for Measurement

- Collimators near ILC IR will cause wakefields
 - Amplify incoming jitter.
 - Dilute emittance.
 - Reduce luminosity.
- Previous studies have shown the complexity of analytical calculations, even in simple cases.
- Goal is to measure the transverse kick for a range of collimator specs, and compare with simulations.
 - Try to improve agreement to ~10%.

Experimental Setup

Beam Energy	28.5 GeV
Charge	~1.5e10
Bunch Length	0.3 – 1 mm
x Size	~1 mm
y Size	~100 um

- Collimators placed in wakefield 'sandwich'.
 - Five slots, allowing four collimators plus extra slot for uninterrupted beam operation.
- Collimator to be tested inserted using X-mover.
- FFTB magnet controllers allow control in y, z, and dy/dz.
 - Readbacks give micron-level position information.

Experimental Setup

Concept of Experiment

Concept of Experiment

Collimators (Run 1)

Slot	Side view	Beam view	
1	α r=1/2 gate	₩ ₩ h=38 mm	α=335mrad r=1.9mm
2			α=335mrad r=1.4mm
3	L=1000 mm		α=335mrad r=1.4mm
4	→ F 7mm		α = π /2rad r=3.8mm

- Collimator #1 is identical to one from a previous test.
- Analytical prediction for #7 and #8 is identical, but 3D simulation hints at differences.
- #3 will have a much larger resistive component than the others.
- This set explores a wide range of taper angles.

Collimators (Run 2)

Collim.#	Side view	Beam view	Revised 27-Nov-2006
6	~211mm	₩ h=38 mm	α=166mrad r=1.4mm (1/2 gap)
10	=21mm		α=166mrad r =1.4mm
11	=21mm		α=166mrad r =1.4mm
12	=21mm		α=166mrad r=1.4mm

- Collimator #6 identical to #6 from Run 1.
- This set investigates the effect of material and surface finish on the kick.
- #16 tested a smooth impedance change.

Collimators (Run 2)

Collimators (Run 2)

Data Analysis

- Kick should be odd function.
- Fit data to 3rd-order polynomial, with quadratic term set to zero.
- Kick factor is the linear term.

Analytical Prediction

Geometric wake

$$\left[\alpha = \theta_{T} b_{1} / \sigma_{Z}\right]$$

For tapered collimators, the prediction depends on the "regime".

- α << 1 inductive regime
- α >> 1 diffractive regime

Typical values in our experiment

$$\theta_T = 324,289,166,50$$
 mrad

$$b_1 = 4.0, 1.4 \,\mathrm{mm}$$

$$\sigma_{7} = 1.0 - 0.3 \,\mathrm{mm}$$

 $\alpha = 1 - 30$ – Collimators are in the intermediate or diffractive regimes.

$$\kappa = \frac{1}{4\pi\varepsilon_0 b_1^2}$$

$$\kappa = 1.35 \frac{1}{4\pi\varepsilon_0} \frac{\sqrt{\alpha}}{b_1^2}$$

Resistive wake

Flat collimator

$$\kappa = F_G \frac{\sqrt{2}}{\pi} \frac{r_e m_e c^2}{e^2} \frac{L}{r^3} \sqrt{\frac{1}{Z_0 \sigma \sigma_z}},$$

Tapered collimator

$$\kappa = F_G \frac{\sqrt{2}}{\pi} \frac{r_e m_e c^2}{e^2} \frac{1}{r_1^2 \tan \alpha} \sqrt{\frac{1}{Z_0 \sigma \sigma_z}}$$

EM Simulations with GdfidL

Jonathan Smith, Lancaster

Misalignment of spoiler jaws

Problem...

Results

Predictions made for 0.5 mm bunch length.

3D modelling does **not** include resistive effects.

Coll.	Measured Kick Factor / V/pC/mm (Linear Fit)	Measured Kick Factor / V/pC/mm (Linear & Cubic Fit)	Analytic Prediction Kick Factor V/pC/mm	3-D Modeling Prediction Kick Factor V/pC/mm
1	$1.4 \pm 0.1 (1.0)$	$1.2 \pm 0.3 (1.0)$	2.27	1.63 ± 0.37
2	$1.4 \pm 0.1 (1.3)$	$1.2 \pm 0.3 (1.4)$	4.63	2.88 ± 0.84
3	$4.4 \pm 0.1 (1.5)$	$3.7 \pm 0.3 (0.8)$	5.25	5.81 ± 0.94
4	$0.9 \pm 0.2 (0.8)$	$0.5 \pm 0.4 (0.8)$	0.56	0.8
5	$3.7 \pm 0.1 (7.9)$	$4.9 \pm 0.2 (2.6)$	4.59	6.8
6	$0.9 \pm 0.1 (0.9)$	$0.9 \pm 0.3 (1.0)$	4.65	2.12 ± 1.14
7	$1.7 \pm 0.1 (0.7)$	$2.2 \pm 0.3 (0.5)$	4.59	2.87 ± 0.53
8	$1.7 \pm 0.3 (2.0)$	$1.7 \pm 0.3 (2.2)$	4.59	2.39 ± 0.89
13		$4.1 \pm 0.4 (0.8)$		3.57 ± 0.98
14		$2.6 \pm 0.4 (1.0)$		3.57 ± 0.98
15		2.0 ± 0.3 (1.8)		2.51 ± 1.16
16		$1.3 \pm 0.3 (1.0)$		2.35 ± 1.50

- Good agreement with PT's previous measurement of #1.
- Analysis not yet complete on all collimators.
- Some anomalies,
 - Why do #1 and #2 have the same measured kick factor?
 - Why is the measurement for #14 lower than #13?

Further Work

- Determine maximum kick allowable in the different ILC parameter sets.
 - Include collimator wake kicks in BDS tracking studies.
 - Enhance analytical prediction to allow fast turnaround between new collimator suggestion and tracking studies.
- Determine reasons for disagreement between experiment and simulation.
 - Necessary to add resistive wake to simulations?