

Simulations of RF fields in IR region

IRENG07 workshop

Shilun Pei, Andrei Seryi SLAC September 19, 2007

ILC INTERACTION REGION ENGINEERING DESIGN WORKSHOP

Contents

- Geometry
- Analytical estimation
- ABCI-2D & MAFIA-2D simulations
- Summary of results
- B-field monitoring along the beam pipe
- Next plan

ILC BDS Meeting, 15 May 2007. http://ilcagenda.linearcollider.org/getFile.py/access?contribId=0&r esId=1&materiaIId=slides&confId=1598

iit

Analytical estimation

 Part 1 and Part 3 can be looked as two shallow cavities (r_{out}>r_{in}). (Handbook of Accelerator Physics and Engineering, p231)
Part 2 and Part 4 can use the

İİĹ

2) Part 2 and Part 4 can use the relation between diffraction impedance formulae and optical approximation impedance formulae to estimate. (PRST, 10, 054401, 2007)

- 1) The total impedance is estimated to be $4Z_0/\pi$, while loss factor is $2Z_0c/(\pi^{3/2}\sigma)$.
- For σ=0.6mm, 0.5mm, 0.4mm, 0.3mm, 0.2mm and 0.1mm, the loss factors will be 67.76V/pC, 81.31V/pC, 101.63V/pV, 135.51V/pC, 203.27V/pC and 406.54V/pC.

Field variation (ABCI)

σ =3cm / Only graphics

İİĻ

IRENG07

5

Wake potential for σ =0.3mm (ABCI)

Loss factor calculation (ABCI)

Relationship between lossfactor and σ/ddz

://

İİĹ

Wake potential for $\sigma=0.2$ mm

:Ir

ijĻ

8

Wake potential for $\sigma=0.3$ mm

:Ir

ijĻ

9

Wake potential for $\sigma=0.4$ mm

IRENG07

:Ir

Wake potential for $\sigma=0.5$ mm

IRENG07

:Ir

ijĻ

Wake potential for $\sigma=0.6$ mm

:Ir

ijĻ

Relation between loss factor and bunch length(ABCI&MAFIA)

://

İİĻ

Long range wake potential for σ =0.3mm

Loss factor spectrum integrated upto F

:lr

Frequency spectrum of loss factor

IRENG07

Summary of results (1)

Bunch length	Loss factor (Analytical)	Loss factor (MAFIA)	Loss factor (ABCI)
0.6mm	67.76	59.07	53.59
0.5mm	81.31	69.75	62.54
0.4mm	101.63	84.94	76.22
0.3mm	135.51	108.60	99.00
0.2mm	203.27	148.75	139.42
0.1mm	406.54	???	230.03

ir

Summary of results (2)

Incoherent Power

$$P = k\tau_b \left\{ (I_{e^+})^2 + (I_{e^-})^2 \right\}$$

Bunch length	*Power loss (pulse)	*Power loss (average)	*Power going out of the chamber	*Power left in the chamber
0.6mm	2.97kW	7.20W	~80%	~20%
0.5mm	3.47kW	8.40W	~84%	~16%
0.4mm	4.23kW	10.24W	~88%	~12%
0.3mm	5.48kW	13.29W	~91%	~9%
**0.2mm	7.72kW	18.73W	~93%	~7%
**0.1mm	12.55kW	30.43W	~96%	~4%

*For nominal ILC beam parameters with bunch interval of 369ns and bunch population of 2*10^10, calculated from ABCI result.

**Simulation result's accuracy is limited due the limited mesh number.

İİĹ

IC B field monitoring along beam pipe(1)

σ=12mm / MAFIA-2D Incoming beam pipe

IC B field monitoring along beam pipe(1)

σ=12mm / MAFIA-2D Outgoing beam pipe

IRENG07

- 3-D simulation (including both axisymmetric and nonaxisymmetric cases) with parallel version GDFIDL (in progress).
- Power attenuation analysis along the beam pipe with MAFIA (in progress).
- Trapped modes analysis in the chamber with Analyst, MAFIA or GDFIDL (to be started).
- Analysis including the other components, such as bellows, BPMs, etc.
- Power absorber studies, etc.

Thanks for many discussions with wakefield the group of SLAC.

İİL