Effect of L* on Collimation Depth

Frank Jackson Daresbury Laboratory

Introduction

- IR design directly determines BDS collimation depth
- In period where there is matrix of options
 - Different beam parameter sets
 - Different L*s
 - Different detectors
- Is collimation depth reasonable over the whole space?
- What issues do we need to consider in calculation?

Quick Method Overview

- Consider halo synch radiation in FD
- Ray tracing technique
 - Semi-analytical linear optics calculation (O. Napoly)
- Gives collimated halo size at FD entrance which allows SR clearance
- Solution is not unique, ellipse in x, y space
- Important constraints
 - Extraction quads
 - Beamcal
 - QF1 quad acceptance

IR ENG 2007, SLA

Present IR Parameter Space

- Push-pull FD+extraction designs for L*=3.51, 4.0, 4.5m (A. Seryi, Y. Nososhkov)
 - Fixed positions for QF1 and first extraction quad
 - Push-pull QD0 and QEX1 for the 3 different L*s/detectors
 - Ex. quad positions and apertures increase with L* (15, 17, 26mm)
- Detector beamcal 'hole' aperture from Detector Outline Documents*
- Assume nominal parameter set

parameter Set	Concept	Beamcal hole r, z (mm)
	SID	13.5, 2950
	LDC	13, 3750
IR ENG 2007, SLAC, SEP 17-21	GLD	20, 4500
	see references at end	

Nominal Collimation Depths

- Naively expect collimation depths to tighten as L* increases
- Dependence on L* is not severe
- Wider SR fan in large L* partially compensated by wider extraction apertures

Preliminary Conclusions

- L* does not severely affect collimation depth
- Constraints of BeamCal, extraction apertures, QF1 acceptance all fairly close
 - Loosening one constraint does not help
 - Limited scope for loosening collimation depth by IR design
- Effect on wakefields estimate
 - RDR emittance growths 0.08% x and 4.4% y (for $\frac{1}{2}\,\sigma$ beam jitter, spoilers and absorber w'fields)
 - Emittance growth increases at least with the square of the collimation aperture
 - − So modest changes in collimation depth become significant, e.g. N_x =80→70 gives 30% increase in emittance growth
 - None-uniqueness of collimation depths could offset this effect (trade N_x for N_y)

Parameter Sets

- High lumi parameter sets (and others)
 - $-\beta^*$ are $\times 2$ smaller than nominal
 - IP divergence is $\times \sqrt{2}$ bigger
 - Collimation depths $\times \sim \sqrt{2}$ tighter
 - Wakefield emittance growth ×~2 bigger

IR Beam Orbit

- Detector field correction schemes (antisolenoids, DID, Anti-DID) perturb the beam orbit and direction of the SR rays
- Max orbit perturbations of the order ~100 µm, 100 µrad (my guesses)
- Could lead to ~1 mm devations in SR rays at apertures

Other Issues

- Margins how much SR can we tolerate on apertures?
- Realistic beams and IR geometry
 - Energy spread, jitter, halo population
 - Magnet and mask misalignment, beampipe thickness
- Is it possible (or worthwhile) to include precise estimates of all effects – or only consider worstcase scenarios/biggest effects?

Reference

Reference Information

- Collimation half gaps 1.3 mm in x 0.7 mm in y
- Emittance growth much larger in y.
 - Spoilers gaps smaller, beta functions 30% larger
 - Phase relationships of y spoilers to IP
 - Energy spoiler has vertical gap and large beta function (compared to x)

BeamCal Info

- SiD r=13.5 mm at 2.95 m
- PTO for slide from SLAC ILC BDS weekly meeting 08 April 07 T. Maruyama

14 mrad crossing geometry

14 mrad crossing geometry in Geant 3 and FLUKA

Why choose just one collimation depth ...

- ... when there is an ellipse of solutions?
- The one chosen is so that the SR fan is a square fitting inside the circular aperture constraint

Push Pull Schemes

2/5