Cryogenic System for the ILC IR Magnets QD0 and QF1

K. C. Wu - BNL

Major Components in ILC IR Hall Interchangeable Detectors

Cryogenic Block Diagram in ILC IR Hall

Cryogenic Block Diagram with Detectors

IRENG07

Possible Combination of Cryogenic Hardware

Issues associated with type and number of refrigeration hardware will be studied when system parameters and requirements become available.

2 K Cooling Scheme for Magnets QD0, QF1

Magnet is cooled in He II at ~ 2 K, 1 bar Design capacity is 15 W

Basic Cooling Requirements for IR Magnets

- Keep magnet below 2.1 K at 1 bar
- Design for removing 15 W heat load
- Service Cryostat is installed at approximately 10 meter from the magnet
- Magnet and Service Cryostat are connected by a vacuum envelop which contains 6 lines.
- The largest line is 3 inch in diameter for 1 bar Helium II and is used to provide 2 K cooling and electrical connection
- "No" vibration should be introduced

Description of Service Cryostat

- Service Cryostat is used for interfacing Magnet with Cryogenic Distribution System, CDS or Liquefier
- 4 K Cooling is converted to Superfluid helium
- Service Cryostat consists of a 4.5 K liquid helium reservoir, a (4 – 2 K) JT heat exchanger, an 1.8 K Evaporator, and ~ 5 cryogenic valves
- Lead pot and ~ 10 current leads are not shown on the flow diagram

Temp. profile along a channel filled with He II at 1 atm, G. B Marion etc.

 $X(T_{c}) - X(T_{w}) = q^{3.4} \times L$

Cross Section of Magnet

Cross Section of Connecting Pipe between Magnet and Service Cryostat Near Magnet

IRENG07

Detector and QD0 need to be moved by ~ 20 meters

Require ~ 50 m of Flexible Transfer lines between QD0 service cryostat and liquefier (or CDS)

QF1 and Crab Cavity do not move (Rigid Transfer Lines between service cryostat and liquefier (or CDS)) 9/17/07 IRENG07

Other Cooling Requirements – Mode of Operation

Baseline Heat Loads

- Heat loads at 1.8 K, 4.5 K and 80 K for QD0 are
 - 15 W at 1.8 K
 - 30 W at 4.5 K
 - 500 W at 80 K
- Heat loads for QF1 are assumed to be the same as QD0 for the time being
- Total heat load for two sets of QD0 and QF1
 - 60 W at 1.8 K
 - 120 W at 4.5 K
 - 2000 W at 80 K

Survey of Flexible Lines End Cap (ATLAS) in 3 Different Positions

9/17/07

Flexible Lines used on ATLAS (CERN)

e e ser e e e THE R R R R R LAr expansion vessels Inner diameter: DNI50 2 m Outer diameter: DN300 displacement Length: 35 m Bendling radius: 1.5 m LN2 heat End-cop C exchangers regulation valve boxes End-cop A

Shielded Flexible Line in ISR (CERN) For Easy Installation or Moving?

Inner channel: 14 mm ID Annular channel: 34 mm ID, 51 mm OD 30 layers superinsulation, Bending radii: ~ 1 meter

~ 2.5 W, 4 K load for 50 meter length (with 4 - 120 K shield , not all at 120 K)

Shield load: ~ 170 W

For larger line (~ 46 mm ID) with 80 K shield, calculated heat loads are ~ 0.15 W/m for 4.5 K and 2.5 W/m for 80 K

Number of Cryogenic Lines

- Between Service Cryostat and Magnet 6 lines (The largest is ~ 3 inch in diameter)
- Between Cryogenic Distribution System and Service Cryostat - 6 or 7 lines
 - 5 Vacuum Jacketed (Should be able to combine into 3 lines)
 - 1 to 2 non-jacketed
 - The length is on the order of 50 meters

Lines Between Service Cryostat and Magnet

- Main Line for transferring 2 K Heat Load at1 bar over 10 meters, containing bus and instrumentation wires inside
- 4.5 K Shield Supply
- 4.5 K Shield Return
- ~ 80 K (or 40 K) Shield Supply
- ~ 80 K Shield Return
- Cooldown Return
- Quench Vent located near Service Cryostat

Lines Between Service Cryostat and Cryogenic Distribution System (Liquefier)

- 4 K Supply
- 4 K Return
- Low Pressure Return ~ 2 K (0.016 bar) (~ 1 inch inner diameter)
- 4.5 K (or Warm) Return
- ~ 80 K (or 40 K) Shield Supply
- ~ 80 K Shield Return
- Warm Return for Cooldown
- Warm Return for Quench Vent
- Note: Warm lines maybe combined

Some Thought for Transfer Lines in IR Hall

9/17/07

Present Understanding

- Cryogenic lines (including jumper) will be welded in construction. No bayonets are planned T. Peterson
- SiD detector is used as an example for current study
- For operating purpose, it is desired to be able to move Magnet, Service Cryostat and associated Hardware for ~ 20 meters from beam center when magnet is cold – B. Parker
- The design should allow detector door to move without interfering with cryogenic hardware
- After the 1st detector is moved to the side, it is desirable to quickly move in a 2nd detector which contains cold magnets.

Summary

- The cryogenic system (1st iteration, below 4.5 K) for the ILC IR magnets QD0 and QF1 has been designed and presented.
- Piping interface with the IR cryogenic system has been investigated and identified.
- Detailed layout for cryogenic system in the ILC IR region could be cumbersome, but it is within the state of art technology.
- Will continue to provide input and work with the ILC IR cryogenic working group