Radiation Physics requirements for the IR

T.Sanami*, A.Fasso, L.Keller, A.Seryi , S,Rokni SLAC

*Department associate, present address: KEK

Outline

Radiation Safety design of IR
Push-pull scheme
Comparison among sites
2. Dose rate estimation for each detectors

Self-shielding type,
Non Self-shielding type,
Pacman
Possibility of shielding design
Feedback to IR engineering design

Introduction

- Push-pull scheme
\rightarrow During one side operation, the other side could be occupied for construction or commissioning
- Area classification
\leftarrow Site dependent
\rightarrow Dose rate limit for access

Look out for each other

Area classification : SLAC rule

- Normal operation
- $0.5 \mu \mathrm{~Sv} / \mathrm{h}$ for GERT (General Employ Radiation Training)
- $5 \mu \mathrm{~Sv} / \mathrm{h}$ for Radiation Worker
- Mis-steering
- $4 \mathrm{mSv} / \mathrm{h}$
- System failure
- $250 \mathrm{mSv} / \mathrm{h}$ and $30 \mathrm{mSv} /$ event
(from SLAC-I-720-0A05Z-002-R001 Radiation Safety Systems (Technical Basis Document, April 2006))

Area classification : LHC design

- Normal operation
- $0.1 \mu \mathrm{~Sv} / \mathrm{h}$ for Non-designated area
- $1 \mu \mathrm{~Sv} / \mathrm{h}$ for Supervised area
- $3 \mu \mathrm{~Sv} / \mathrm{h}$ for Simple controlled area
- Total beam loss
- $0.3 \mathrm{mSv} / \mathrm{h}$ for Non-designated area
- $2.5 \mathrm{mSv} / \mathrm{h}$ for Supervised area
- $50 \mathrm{mSv} / \mathrm{h}$ for Simple controlled area
(from http://indico.cern.ch/conferenceDisplay.py?confld=1561 talk of D. Forkel-Wirth)

Area classification : KEK (Belle)

- Normal operation
- $0.2 \mu \mathrm{~Sv} / \mathrm{h}$ for Non-designated area
- $1.5 \mu \mathrm{~Sv} / \mathrm{h}$ for Supervised area
- $20 \mu \mathrm{~Sv} / \mathrm{h}$ for Simple controlled area
- Mis-steering beam loss
- 1 hour integration of dose rate should not exceed $1.5 \mu \mathrm{~Sv} / \mathrm{h}$ using radiation monitor. (Terminate injection and wait 1 hour)

Belle Experimental floor:
Supervised area

Shielding capability

- To evaluate strawman models
$\rightarrow 250 \mathrm{mSv} / \mathrm{h}$ for total (18 MW) beam loss
(SLAC system failure)
$=\underline{14} \mu \mathrm{~Sv} / \mathrm{h}$ for 1 kW beam loss

GERT access ($0.5 \mu \mathrm{~Sv} / \mathrm{h}$) on experimental floor
Normal beam loss should be less than 36 W

Mis-steering ($4 \mathrm{mSv} / \mathrm{h}$) on experimental floor Beam should be turn-off less than $\mathbf{5 7}$ sec

Shielding capability (Cont.)

- Shielding: $\mathbf{2 5 0} \mu \mathrm{Sv} / \mathrm{h}$ for 18 MW beam loss
- Normal beam loss: less than 36W
$<0.5 \mu \mathrm{~Sv} / \mathrm{h}$ on experimental floor
- Mis-steering: turn-off less than $\mathbf{5 7 \mathrm { sec }}$
$<4 \mathrm{mSv} / \mathrm{h}$ on experimental floor

```
SLAC:GERT access
LHC: Supervised area
    (turn off 35 sec because of 2.5 mSv/h)
KEK: Supervised area
```

\rightarrow Design goal for evaluation of shielding structure

Evaluation for Strawman models

- 500 GeV , 18 MW beam loss
\rightarrow Design Goal : $250 \mathrm{mSv} / \mathrm{h}$
- Beam loss point and material
- Design is available : realistic component
- Design is not available : pessimistic scenario, $=20 \mathrm{X}_{0}$ thick Cu target
- 3D Monte-Carlo simulation
- MARS-MCNP code

Experimental hall, BDS tunnel and Pacman

Self shielding detector: GLD

Case \#	Detector	Target	To know
1	GLD	FCAL	Self-shielding capability of detector
2	GLD	Cu $20 \mathrm{X}_{0} @ B D S$	Check weak point of Pacman

GLD

- Iron Yoke: 2.7 m thick + Hadron and EM cal.
- Effect of 4.5 cm Gap

GLD

*Cryostat, magnet and beam line are not included

Result \#1 GLD FCAL hit case

Result \#2 Beam loss in BDS tunnel

Self shielding detector: SiD

Case \#	Detector	Target	To know
3	SiD	LowZ	Overall self-shielding capability of detector

Use structure and values described in http://confluence.slac.stanford.edu/display/ilc/sid00

- Iron Yoke: 2.4 m thick + Hadron and EM cal.
- Effect of 0.5 cm and 4 cm gaps (space for muon detector) in endcap

*Cryostat, magnet and beam line are not included

Result \#3 SiD LowZ hit case

Non self shielding detector : $4^{\text {th }}$ concept

Case \#	Detector	Target	To know
4	4 th	Cu $20 \mathrm{X}_{0}$	Possibility of shielding

- Iron Yoke: 0.0 m thick + Hadron and EM cal.
- Requirement of shielding

Concrete shield around the detector and electronics

Result \#4 4th concept case

- *Hadron Calorimeter, Cryostat, magnet and beam line are not included

Cryo penetration

Case \#	Detector	Target	To know
5	GLD	Cu $20 \mathrm{X}_{0}$	Penetration of pacman

- Pacman thickness
- Effect of cryo. penetration

25cm 1 knee geometry
A-A' cross section

$1^{\text {st }}$ leg: 50 cm above $B L, 175 \mathrm{~cm} \mathrm{~L}, 2^{\text {nd }}$ leg: 450 cm L
By MARS15 plotter
Detector: "GLD, IR hall: 20m(L)x110m(W)x35m(H)

Result \#5 25cm diameter, 1 knee penetration

Summary

- Possibility to satisfy $250 \mathrm{mSv} / \mathrm{h}$ for 18 MW loss
\rightarrow GERT access, Supervised area
- Self-shielding detector
- Concrete shield with non-self shielding detector
- Penetration through Pacman
- Next Step
- Simulation with beam line components
- Cryostat module, Anti-DID solenoid, etc.
- Effects from upstream
- Dose rate from upstream part (collimator loss)
- Air activation

Beam loss distribution

- Normal operation
- Tracking to estimate beam losses
- Beam-Beam effect
- Beam-Gas effect
- Touschek effect,, etc
- Beam loss position and amount
- Mis-steering situation
- Lay trace, Beam shut-off system
- System failure
- Lay trace, Beam shut-off system

Cover of shaft and wall between detectors

Case \#	Detector	Target	To know
1	None $(3 \mathrm{~m}$ conc. around $)$	Cu 20X $_{0}$	Requirement of shaft cover
2	None	Cu 20X	

Geometries for calculation

The wall between detectors

IRENG 09/14/200

Effect of gap on the top of the Wall
2. Dose rate distribution in experimental hall

1. Shielding cover on access shaft over the IR hall

The shaft

These values are not decided, yet
$5 \mathrm{~m}=50-100 \mathrm{t}$ crane
Someone wants 400t class!

Beam line and 3 m thick concrete shield (for beam commissioning)

Results of calculation

Pacman

Question: Do muons from sources in the collimation section cause a dose rate problem outside a self-shielded detector?

Plot showing how the 5 m magnetized wall disperses muons from a single source which reach the IR hall

Answer: The estimated dose rate outside a 6.5 m radius detector from all sources, 0.1% collimated halo, both beams, is $0.045 \mathrm{mrem} / \mathrm{h}$

- SLAC limit is $0.05 \mathrm{mrem} / \mathrm{h}$.

- Experimental hall : 30m long - 30m width -30 m height
- Tentative, depend on crane size, how to assemble detectors,, etc.
- BDS tunnel and Pacman
- Tentative, depend on shield design, scheme of detector exchange, etc.
- Minimum shield for 18MW electron beam
- Concrete 3 m
(Determined by our previous work)

18MW loss Dose attenuation in concrete at 10 m from the beam

