

Radiation Physics requirements for the IR

T.Sanami*, A.Fasso, L.Keller, A.Seryi , S,Rokni SLAC

*Department associate, present address: KEK

IRENG 09/14/2007

1

Radiation Safety design of IR

Possibility of shielding design

Feedback to IR engineering design

Introduction

- Push-pull scheme
 - \rightarrow During one side operation, the other side could be occupied for construction or commissioning
- Area classification
 - $\leftarrow Site \ dependent$
 - \rightarrow Dose rate limit for access

- Normal operation
 - 0.5 μ Sv/h for GERT (General Employ Radiation Training)
 - 5 μ Sv/h for Radiation Worker
- Mis-steering
 4 mSv/h
- System failure
 - 250 mSv/h and 30 mSv/event

(from SLAC-I-720-0A05Z-002-R001 Radiation Safety Systems (Technical Basis Document, April 2006))

- Normal operation
 - 0.1 μ Sv/h for Non-designated area
 - -1μ Sv/h for Supervised area
 - 3 μ Sv/h for Simple controlled area
- Total beam loss
 - 0.3 mSv/h for Non-designated area
 - 2.5 mSv/h for Supervised area
 - 50 mSv/h for Simple controlled area

(from <u>http://indico.cern.ch/conferenceDisplay.py?confld=1561</u> talk of D. Forkel-Wirth)

- Normal operation
 - 0.2 μ Sv/h for Non-designated area
 - 1.5 μ Sv/h for Supervised area
 - 20 μ Sv/h for Simple controlled area
- Mis-steering beam loss
 - 1 hour integration of dose rate should not exceed 1.5 μSv/h using radiation monitor. (Terminate injection and wait 1 hour)

Belle Experimental floor:

Supervised area

• To evaluate strawman models

→ 250 mSv/h for total (18 MW) beam loss (SLAC system failure) = <u>14 μ Sv/h for 1 kW beam loss</u>

GERT access (0.5 μ Sv/h) on experimental floor Normal beam loss should be less than <u>36 W</u>

Mis-steering (4 mSv/h) on experimental floor Beam should be turn-off less than <u>57 sec</u>

Shielding capability (Cont.)

- Shielding: <u>250 μSv/h for 18 MW beam loss</u>
- Normal beam loss: less than <u>36W</u>

< 0.5 μ Sv/h on experimental floor

• Mis-steering: turn-off less than 57sec

< 4 mSv/h on experimental floor

SLAC: GERT access LHC: Supervised area (turn off 35 sec because of 2.5 mSv/h) KEK: Supervised area

 \rightarrow Design goal for evaluation of shielding structure

- 500 GeV, 18 MW beam loss
 → Design Goal : 250 mSv/h
- Beam loss point and material
 - Design is available : realistic component
 - Design is not available : pessimistic scenario, = 20 X₀ thick Cu target
- 3D Monte-Carlo simulation
 - MARS-MCNP code

Experimental hall, BDS tunnel and Pacman

Self shielding detector : GLD

Case #	Detector	Target	To know
1	GLD	FCAL	Self-shielding capability of detector
2	GLD	Cu 20X ₀ @BDS	Check weak point of Pacman

- Iron Yoke: 2.7m thick + Hadron and EM cal.
- Effect of 4.5 cm Gap

IRENG 09/14/2007

GLD ΪĿ $^{\rm Cm}$ 500 X MARS GUI-Slice;) BH_r 250 Cm 2.00e+03 20 Ш ____ Xmi 200 1.00e+03 Xma -250 2060.0 \sim X= 0.0 Cm 0 1.75e+03 2.00e+03 2.25e+03 2.50e+03 1:1 scale OFF Magnetic field OFF Load Track -1.00e+03 Materials Run ۰ 🔶 ٧ Н ψ π 🔶 Color 🔶 B&W 🔶 FIII -2.00e+03 - 99 - 99 Load Hist ON Cm 1.00e+03 2.00e+03 3.00e+03 4.00e+03 0 0.0 0.0 Shift H= Shift V= **3D Visualization** X Ĺ→Z << >> <u>G</u>rab <u>Q</u>uit <u>D</u>raw Print | Aspect Ratio: X·Z = 1·0 97087

*Cryostat, magnet and beam line are not included

IRENG 09/14/2007

Result #1 GLD FCAL hit case

Self shielding detector : SiD

Case #	Detector	Target	To know
3	SiD	LowZ	Overall self-shielding capability of detector

Use structure and values described in http://confluence.slac.stanford.edu/display/ilc/sid00

- Iron Yoke: 2.4 m thick + Hadron and EM cal.
- Effect of 0.5 cm and 4cm gaps (space for muon detector) in endcap

IRENG 09/14/2007

Result #3 SiD LowZ hit case

Non self shielding detector : 4th concept

Case #	Detector	Target	To know
4	4th	Cu 20 X ₀	Possibility of shielding

- Iron Yoke: 0.0 m thick + Hadron and EM cal.
- Requirement of shielding

Concrete shield around the detector and electronics

Result #4 4th concept case

*Hadron Calorimeter, Cryostat, magnet and beam line are not included
IRENG 09/14/2007
21

Cryo penetration

Case #	Detector	Target	To know
5	GLD	Cu 20 X ₀	Penetration of pacman

- Pacman thickness
- Effect of cryo. penetration

- Possibility to satisfy 250 mSv/h for 18 MW loss
 - \rightarrow GERT access, Supervised area
 - Self-shielding detector
 - Concrete shield with non-self shielding detector
 - Penetration through Pacman
- Next Step
 - Simulation with beam line components
 - Cryostat module, Anti-DID solenoid, etc.
 - Effects from upstream
 - Dose rate from upstream part (collimator loss)
 - Air activation

- Normal operation
 - Tracking to estimate beam losses
 - Beam-Beam effect
 - Beam-Gas effect
 - Touschek effect,, etc
 - Beam loss position and amount
- Mis-steering situation
 - Lay trace, Beam shut-off system
- System failure
 - Lay trace, Beam shut-off system

Cover of shaft and wall between detectors

Case #	Detector	Target	To know
1	None (3m conc. around)	Cu 20X ₀	Requirement of shaft cover
2	None	Cu 20X ₀	Requirement of shaft cover and acceptable clearance for crane

Geometries for calculation

Results of calculation

<u>Question</u>: Do muons from sources in the collimation section cause a dose rate problem outside a self-shielded detector?

Plot showing how the 5 m magnetized wall disperses muons from a single source which reach the IR hall

Answer: The estimated dose rate outside a 6.5 m radius detector from all sources, 0.1% collimated halo, both beams, is 0.045 mrem/h – SLAC limit is 0.05 mrem/h

IRENG 09/14/2007

İİL

Modeling of the other part

- Experimental hall : 30m long 30m width 30m height
 - Tentative, depend on crane size, how to assemble detectors,, etc.
- BDS tunnel and Pacman
 - Tentative, depend on shield design, scheme of detector exchange, etc.

18MW loss Dose attenuation in concrete at 10m from the beam