GLD and GLDc

Y. Sugimoto/T.Tauchi (KEK) IRENG07, SLAC, Sep. 15, 2007

Compact GLD Option

Motivation

- GLD and LDC will write a common Lol
- The detector design should have common parameters
- These parameters should be determined based on detailed simulation study, but it will take a time ~0.5y(?)
- As a working assumption for the moment, a modified design of GLD with the central values for B and R_{CAL} between the GLD and LDC is made
 - B=(3+4)/2=3.5 T
 - $R_{CAI} = (2.1 + 1.6)/2 = 1.85 \text{ m}$

GLD

Compact GLD (GLDc)

Parameters (1)

			GLD	GLDc
Iron Yoke	Barrel	Rout	7.2 m	6.9 m
		Rin	4.5 m	4.1 m
		Weight	6090 t	5080 t
	E.C.	Zin	4.2/4.5 m	3.7/3.95 m
		Zout	7.5 m	6.9 m
		Weight	3260 t / side	3050 t / side
Solenoid	В		3 T	3.5 T
	R		4 m	3.6 m
	Z		4 m	3.6 m
	Weight		~330 t	~300 t
	Е		1.6 GJ	1.7 GJ
Stray field @Z=10m		70 G	120 G	

Barrel yoke + Solenoid

6,420 t

5,380 t

Parameters (2)

		GLD	GLDc	
TPC	Rin		0.45 m	0.45 m
	Rout		2.0 m	1.75 m
	Zmax		2.3 m	2.0 m
Barrel CAL	ECAL Rin		2.1 m	1.85 m
		Rout	2.3 m	2.05 m
		BRin ²	13.2 Tm ²	12.0 Tm ²
	HCAL	Rout	3.5 m	3.15 m
		Thickness	1.2 m	1.1 m
	Weight		1750 t	1130 t

TPC weight = 4 t

LDC=10.2, SiD=8.1

Parameters (3)

			GLD	GLDc
EC CAL	ECAL	Zmin	2.8 m	2.4 m
		Zmax	3.0 m	2.6 m
	HCAL	Zmax	4.2 m	3.7 m
		Thickness	1.2 m	1.1 m
Weight		270 t / side	270 t / side	
CAL	Total weight		2290 t	1670 t
Detector weight	Barrel yoke + solenoid		6.4 kt	5.4 kt
	Barrel total		8.2 kt	6.5 kt
	Endcap total		3.5 kt/side	3.3 kt/side
	Total weight		15 kt	13 kt

Assembly

GLD

- Barrel part (Yoke+Sol.) > 6,000 ton
- For CMS style assembly (using 2,000 ton crane to descend), it should be split into 5 rings and there will be many gaps
 - Large stray field
 - Difficulty in alignment of rings
- In present design, GLD barrel yoke is split in R- and φ-direction into 24 pieces
- 400-t cranes in the underground exp hall and surface assembly hall

GLDc

- Barrel part (Yoke+Sol.) < 6,000 ton
- Pure CMS style assembly can be done by splitting the barrel part into 3 rings and splitting each end cap part into two halves
- 50~100-t crane underground which depend on Pacman configuration, 2,000-t crane for the shaft, and 80-t crane in the surface assembly hall

Design of GLDc Endcap

- GLD/GLDc endcap yoke is vertically split
- Installation and maintenance of Muon detectors are done from the splitting plane (X=0 plane) like Belle detector
- Support rings (SUS) can be put between iron slabs to increase the rigidity of the endcap yoke
- Usually two halves may be connected tightly and split only for installation and maintenance of sub-detectors
- Endcap calorimeters can be arranged without dead space
- Because hadrons make shower in the endcap iron, small gap of muon detectors does not make inefficiency of muon identification

Calculation by FEA method

- Endcap is treated as a whole and surface force is calculated
- The surface force at the front surface of the endcap is obtained as a function of R, and parameterized by a simple function
- This simple function is used for the calculation of the deformation
- Z-constraint only at R=4.1m
 (Inner radius of barrel yoke)
- 3D model calculation

Magnetic Force (M)

(2D axial symmetry)

Results

	Split Angle Support ring		ΔΖ		
			r=0.4 m	r=6.9 m	
20	00 100	No	-21 mm	+11 mm	at φ=0
3D	180		-23 mm	-13 mm	at φ=90
3D	no	No	-12 mm	-3.9 mm	
20	3D 180	1 (r=4.1m)	-5.7 mm	-0.6 mm	at φ=0
30			-5.9 mm	-0.5 mm	at φ=90
3D	no	1	-4.6 mm	-0.2 mm	
20	0D 400	2 (r=2.3, 4.1m)	-2.6 mm	+0.5 mm	at φ=0
3D	180		-2.7 mm	-0.7 mm	at φ=90
3D	no	2	-1.8 mm	-0.4 mm	
0.0	3D 180	3 (r=2.3, 3.2, 4.1m)	-1.7 mm	+0.3 mm	at φ =0
3D			-1.8 mm	-0.7 mm	at φ =90
3D	no	3	-1.1 mm	-0.4 mm	
2D	no	No	-90 mm	0 mm - Fix	SiD-like: 23x(10cm Fe + 5cm gap)

3D: 3-dimensional model

2D: Axial symmetric 2-dimensional model

180: Splitting endcap no: Non-splitting endcsp

No support ring

One support ring/gap

a support ring (SUS) at R=4.1m

3D-180 degree model

Gap in sub-detectors

- Endcap calorimeters
 - Split along a plane which does not cross the IP (x=30cm plane, for example)
- Endcap muon detector
 - Split along the x=0 plane (same as iron yoke)
 - Tracks entering the muon-detector gap can be detected by TPC and calorimeters
 - If the particle is a pion, it creates hadronic shower in iron yoke, and would be detected by muon detector even if there is small gap

Gap in sub-detectors

Pacman design and FD support

- A: slide sideway using air pad
- B: supported from the floor of platform
- QD0 cryostat is supported by the support tube and the support tube is supported from B
- We can put additional support for the support tube at the entrance of endcap yoke to damp the vibration, if necessary
- Upper part of B (~10 ton) must be removable by crane for installation and removal of the support tube
- C: slide along the wall (D) (common to both experiments) ~50 tonx2
- D: part of the wall
- Wall distance can be as small as 11.5 m from IP, if the crane can access to 2.65m from the wall
- Construction of C is done by a mobile crane (CMS style)
- Inner radius of pacman should be determined after design of gate valve etc. between QD0 and QF1 is fixed

Pacman design and FD support

Pacman design and FD support

Still smaller cavern option

- Forget about crane access
- Forget about safety issues
- Design with cavern floor width as small as 21m can be drawn with the supporttube scheme
 - Pacman "C" moves
 upwards (using a small
 gantry crane fixed to the
 wall?) in push-pull
 operation
 - There is no way for a person to run away from one side of the detector to the other side (escape tunnel ?)

B field of GLDc

B₀=3.5 T B(10.5m<Z<20m) <50 G B(R>8m) <500 G

L* for GLDc

Component	Start	Length
End cap yoke	3.7 m	
BCAL	3.8 m ^(note-1)	0.2 m
BPM	4.0 m	0.2 m
QD0 cryostat	4.2 m	0.264 m
QD0 coil (L*)	4.464 m	

L* of ~4.5 m seems adequate

note-1:

By putting BCAL at Z>Z_{endcap}, strength of anti-DID can be reduced because R-component of solenoid B-field near the hole of end cap yoke can help guiding low energy pair-background into the beam exit hole

GLDc requirements for CFS

- Surface assembly hall
 - Same as CMS (?)
- Main shaft
 - 16 m in diameter or larger
- Underground cavern
 - 21 m floor (platform) width
 - Crane access to Z~9m
 - Cavern size is site-dependent
- Power consumption
 - Detector: > 9.7 kW
 - E-hut, sol. power supply, etc. :373kW (ramp up sol.) / 193 kW
 - Final doublet: → Ask WG-B
 - Platform movement: ??
 - Light, air-conditioning: → Ask WG-C

Guess of power consumption of detector (kW)				
	Detector	E-hut, etc.		
VTX	0.3	3		
SIT	not yet	not yet		
TPC	0.4 (pulsed)	100 (200-50)		
CAL	9	70		
Solenoid	-	200/20		
Total	>9.7	>373/193		

Other Issues

- Issues not studied yet
 - Detector cooling
 - Detector alignment
 - Luminosity (run period) needed for track-based alignment
 - Support scheme of beam pipe
 - Vibration analysis
 - Seismic issues
 - Services for detector solenoid including push-pull
 - Tolerable stray field from the viewpoint of safety and interference with near-by electric apparatus
 - Fire safety
- How to proceed these studies?
 - Should GLD and LDC do it independently?
 - Or, shall we study for the unified large detector?

Summary

- Thanks to intense discussion in WG-A, a self-consistent design of compact version of GLD – GLDc has been developed
 - Barrel yoke is divided into 3 parts in Z and pure CMS-like assembly is adopted
 - Requirement for capacity of the crane underground is much less than 400 ton
 - Endcap is vertically split and reinforced by support rings between iron slabs
 - Installation and maintenance of endcap muon detectors are done from the splitting plane (Belle-like)
 - Endcap calorimeters are split with an offset in x-direction not to make inefficient gap for neutral particles from IP
 - QD0 is supported from the floor through a support tube
 - The support tube is additionally supported from the endcap yoke to reduce the low-frequency vibration, if necessary
 - In the push-pull operation, beam line is cut between QD0 and QF1, pacman attached on the wall is open, and then, the detector and the QD0 support system move together sitting on a big (21m (width) x23m (length)) platform
- A lot of issues are still to be studied
 - Collaboration with LDC for a unified detector design seems reasonable