Very Forward Instrumentation of the ILC Detector

Wolfgang Lohmann, DESY

Talks by M. Morse, W. Wierba, myself

BeamCal and LumiCal (Example LDC, 14 mrad):

- precise (LumiCal) and fast (BeamCal) luminosity measurement
- hermeticity (electron detection at low polar angles)
- mask for the inner detectors
- GamCal ~150 m downstream for fast luminosity

Inner Radius of Cal.: < 10 μm

Distance between Cals.: < 600 μm

Radial beam position: < 1000 μm

C IR WS

LumiCal mechnics and positioning

- •Reflective laser distance measurement accuracy ~1-5 μ m, resolution ~0.1-0.5 μ m •Mirrors glued to beam pipe
- Calibration of sensors procedure - detector push-pull solution (?)

- Beam pipe (well measured in lab before installing, temperature and tension sensors for corrections) with installed BPM (BPM's also on outgoing beam?)
- Laser beams inside 'carbon' pipe (need holes, but possible)

Simulations to optimise the Design

Finely segmented, compact calorimeter with fast readout

BeamCal & GamCal

Determination of beam parameters from beamstrahlung depositions on BeamCal:

Quantity	Nominal Value	Precision
σх	553 nm	2.9
σ y 5.0 nm		0.2
σΖ	300 μm	8.5

Rough information on bunch crossing at low bunch charges

September 2007

BeamCal & GamCal

Combine informations from pairs and photons (B. Morse)

The ratio of the two quantities is proportional to the actual luminosity

September 2007

BeamCal Mechanics

September 2007

The Mounting Procedure for BeamCal

Installation and disassembly must be possible without opening the vacuum!

- 1 montage of an auxiliary structure
- 2 montage of the first half barrel
- 3 Turn the barrel and bring the first calorimeter half barrel in final position
- 4 remove the auxiliary structure
- 5 montage of the second half barrel

To perform this procedure the upper half of the shielding tube has to be removed

Summary

- Forward calorimeters interfere with QDO, vacuum pumps, BPM's, ballows, other beam diagnostics devices
- *We have to avoid matter in front of the calorimeters
- LumiCal has challenging position accuracy requirements

Lets Stay in Touch

BeamCal

Efficient low angle electron veto Why:
Background suppression in search channels, e.g.

Similar signatures, Two photon cross section much larger

Background (two photon)

Number of unvetoed 2-photon events:

Veto Energy Cut, GeV	75	50
Nominal	45	5
Low Q	40	0.1
Large Y	50	9
Low P	364	321
Nominal, 20mrad	396	349

September 2007

GamCal &LumiCal

Ratio of energy depositions in BeamCal and GamCal:

Almost proportion al to the Luminosity !!!

LumiCal, present understanding

Maximum peak shower

- 10 cylinders (θ)
- •60 cylinders (θ)

Pac 80.00 128.57 20.00 - 280.00

64 cylinders

120 sectors

30 rings

Parameter	Pad Performance
Energy resolution	25% (√ <i>GeV</i>)
θ resolution	3.5 * 10 ⁻⁵ rad
φ resolution	10 ⁻² rad
Δθ	~ 1.5 * 10 ⁻⁶ rad
Electronics channels	25,200

