# ILC Experimental Hall Cryogenics An Overview

J. G. Weisend II SLAC/NSF

### Introduction



- The hall will contain a number of different systems requiring cryogenic temperatures
- Successful operation of the hall will require that these systems be integrated & coordinated in a logical manner with each other and with other subsystems (e.g. conventional facilities)
- This talk will give a top level overview of these systems and raise questions that need to be answered





- 2 detectors, both with cryogenic components, in a push/pull configuration
- We want to be able to move the detectors while cold
- We want the offline detector to have the option of being cold and powered
- QD0 magnets move with the detectors while the QF1 magnets are fixed in the hall
- Should the temperatures of the two detectors as well as their states (cold, warm, cool down or warm up) should be independent regardless of their position in the hall?



# What needs to be Cooled?

| Component                   | Operating<br>Temperatures  | Comments       |
|-----------------------------|----------------------------|----------------|
| Detector A                  | 4.2 K                      | Detector Moves |
| Superconducting<br>Solenoid | Possible 40-80 K<br>Shield |                |
| Detector B                  | 4.2 K                      | Detector Moves |
| Superconducting<br>Solenoid | Possible 40-80 K<br>Shield |                |

9/17/2007 J. G. Weisend II



# What needs to be Cooled?

| Component                                         | Operating<br>Temperatures                | Comments                |
|---------------------------------------------------|------------------------------------------|-------------------------|
| IR Final Focus superconducting magnets (QD0, QF1) | 2 K<br>4.5 K shield<br>40-80 K<br>shield | QD0 moves, QF1<br>Fixed |
| Crab Cavities<br>(SCRF)                           | 2 K<br>4.5 K shield<br>40-80 K<br>Shield | Fixed                   |

9/17/2007 J. G. Weisend II 5

## Helium Refrigeration Systems



- Helium is the working fluid
- Cooling is accomplished by making the He do work or by heat exchanging it with a colder flow stream
- Systems are almost completely closed cycle (for the most part the He gas is conserved)
- Thermodynamically, it is better to intercept heat at higher temperatures (thus intermediate temperature thermal shields & sinks)
- It's best to minimize the amount of subatmospheric piping (thus the use of cold compressors)
- It's best to avoid two-phase flow
- It's best to minimize the He II heat transfer length





- Helium Compressors
  - Provides high pressure (~20 Bar) He gas to cycle
  - Oil flooded screw compressors requiring oil removal equipment
  - Require significant amount of electrical power and water cooling
  - Would be placed on the surface





#### Cold Box

- Contains heat exchangers, expansion turbines, valves, instrumentation, heaters and vessels
- Is vacuum insulated
- Could be placed in the experimental hall



FIGURE 1. Simplified process flow diagram of the CMS refrigeration system.





- Distribution or feed boxes
  - Interconnects output of cold box with items to be cooled
  - Typically contains valves, instrumentation and piping
  - Multiple connections are needed for different temperature levels as well as for cooldown/warmup and quench
  - Could be placed on the detector assemblies and move with them





- Helium II Cold Boxes
  - Converts 4.2 K LHe to He II (T< 2.2 K)</p>
  - Uses heat exchangers and a JT valve
  - Could be part of the distribution box and move with detector
  - Uses cold compressors & probably will also require warm compressors at the surface
- Transfer Lines
  - Vacuum insulated piping that interconnects the various cryogenic components
  - Can be made with some flexibility to allow motion though space has to be carefully thought about

2.4 kW @ 1.8 K refrigeration cycles for the LHC (Large capacity & need for "turn down" drives cycle other options may be possible for ILC experimental hall systems)



## LHC Cold boxes of 2.4 kW @ 1.8 K refrigeration unit



### Main features of LHC cold compressors









- Electrical power
- Instrument air
- Cooling water (mostly surface but some in hall as well)
- Emergency power
- Oxygen Deficiency Monitoring systems



## Cryogenic Controls

- Complicated but well within state of the art
- Industrially based (PLC)
- Once everything has been commissioned, automated operation should be possible
- Different cryogenic systems should have the same control systems or at least the same HMI

## Questions to be Answered



- How many refrigerators? What do they cool?
- Where are components to be located?
- Will LN<sub>2</sub> be used?
- Degree of flexibility, redundancy and interconnection for cooling systems?
- Heat loads at various temperatures & resulting size of refrigeration plants?
- Type & amount of utilities required?
- Space required ?

## Summary



- The ILC Experimental Hall will contain a wide variety of cryogenic components requiring cooling.
- The good news is that the cryogenic refrigeration & distribution systems are well within the state of the art. Thanks to LHC, CEBAF, SNS & Tore Supra even large scale He II systems been built & commissioned.
- Some movement of equipment at cryogenic temperatures is certainly possible.
- A key to success with be an integrated approach to hall cryogenics that meets the requirements of all the cryogenic components & coordinates well with other disciplines (conventional facilities, safety etc)
- There are lots of questions to be answered and decisions to be made.
- Basic decisions and the development of a basic layout should be made here. Tasks should be distributed to working groups that continue after the workshop.



## Acknowledgements

"This material was based on work supported by the National Science Foundation, while working at the Foundation."

"Any opinion, finding, and conclusions or recommendations expressed in this material; are those of the author and do not necessarily reflect the views of the National Science Foundation."

9/17/2007 J. G. Weisend II 20