Beam Dynamics IR Stability Issues

Glen White / SLAC September 182007 IRENG07

-Vibration tolerances for final doublet cryomodules
-Settlement of detector (effect of \sim mm shift in desired IP)

Final Doublet Stability

\square Asses jitter tolerance on cryomodules containing QF1/SF1 + QD0/SD0.
-Use Lucretia + GUINEA-PIG to measure LUMI loss criteria for magnet offsets with IP fastfeedback compensating.
\square Luminosity degrades with increased offset through 2 effects:
$>$ time required for feedbacks to converge
\Rightarrow IP beam aberrations induced as a result of off-axis passage through sextupoles.

IP Fast-Feedback

\square Use ILC IP FFB, tuned for 'noisy' conditions
$>$ Less than 5\% lumi-loss with GM 'K' + 25nm component vibration (pulsepulse) \& ~ 0.1 sigma intra-bunch uncorrelated beam jitter.
\square Assume BDS-entrance FFB has perfectly flattened beam train (flat trajectory into Final Doublet).

- No 'banana' effect on bunches.
- Calculate Luminosity from measured bunches, with mean of last 50 weighted to account for the rest of the beam train (2820 bunches).

Modeled Final Doublet Layout

-IP FFB kicker ($\sim 1 m$) gap between 2 cryomodules near IP.
-Distance of kick from SDO face affects lumi as beam is kicked off-center through SD0.
\square Advantage to using shorter kicker?

Effect of SD0/QD0 Offset

\square Luminosity loss as a function of SD0/QD0 offset and relative importance of offset through SD0 vs. IP offset.
\square Shows beam size growth through offset SD0 dominant over FFB beam offset conversion time (more so in vertical plane).
$>$ e.g. for y at 500 nm offset, $\sim 85 \%$ of luminosity loss through beamsize growth effect, 15% through conversion time of FFB system.

Luminosity vs. QD0/SD0 RMS Jitter and Kick Distance

- Calculate Luminosity loss for different jitter / kick distance cases using 'SDO lumi loss' and 'FFB lumi loss' look-up tables (horizontal + vertical).
\square Left plot shows \% nominal luminosity with given RMS SD0/QD0 jitter and varying kick-SD0 distance.
\square Right plot shows all jitter cases plotted vs. kick distance and shows the expected dependence on kick distance.

Tracking Simulation Results with RMS Offsets of both Final Doublet Cryomodules

Track 80K macro particles (e- \& e+ side) from QF1 -> IP with RMS SF1/QF1 and SD0/QD0 vibration in horizontal and vertical planes.

- Results show mean and range of luminosities from 100 consecutive pulses.

Vibration Tolerance Summary

\square Added luminosity loss due to jitter of final doublet cryomodules (>5\% @~200nm RMS).
$>$ Needs to be convolved with 'background' environment of GM and other jitter sources.
\square Results are worse-case here where everything else is perfect, other errors (e.g. non-linear train shape) will mask this effect to some degree.
\square Small effect due to kicker distance from SD0, becomes more pronounced in cases with larger RMS jitter.
\square Simulations of BDS tuning show something like ~10\% overhead in luminosity after initial tuning. All dynamic lumi-reducing effects should total less than this.
$>$ Remaining luminosity overhead dictates how long ILC can run before some (online) re-tuning required (~ 3 days with current assumptions).

Settlement of Detector (IP)

\square Effect of IP moving up or down by ~mm's per year? Assume settlement isolated to IP (+ QDO/SD0).
\square lf want to keep collision point at same physical location w.r.t. detector, need to periodically re-align BDS.
DHow often? - What is tolerance of absolute collision position w.r.t. detectors from physics perspective?

Doing Nothing

\square Can we do nothing? (Leave IP in a shifted location w.r.t. detectors)
\square Would need to at least move QD0/SD0 cryomodules. Presumably get info on how far IP has shifted from detector vertex reconstruction?
\square Beam offset w.r.t. detector solonoid a problem?

DS "sags" by, say, 1cm per year... (S. Seletskiy)

- In case of 1 cm sag of the DS we expect to obtain the increase of both x and y beam sizes.
- $\sigma_{y} / \sigma_{y 0}: 1.5$ => 2.2
- $\sigma_{x} / \sigma_{x 0}: 1$ => 1.3
- The trajectory in the IP will get shifted by $d x=90$ um and $d y=70 \mathrm{~nm}$.
- Such small changes occurring in 1 year can be easily compensated.
- PS: all simulations are done for $\operatorname{SiD}, L^{*}=351 \mathrm{~cm}$.

Impact of BDS Realignment

\square Rotate 2 sides of BDS starting at first quadrupole (QMBSY1) to collide beams at desired IP location using magnet movers.
$>$ Need range of movers ~ few mm (more closer to IP).
$>$ Compensate for change in IP y' offset with IP y' FFB kicker:

- Required correction ~ 0.5 urad per mm IP drift. Current design of kicker required to provide up to ~ 100 urad IP y' kick.
\square Degrades lumi through added IP dispersive effects due to required angle change + finite resolution of movers perturbing orbit.
\square IP vertical beam spot degrades $\sim 0.3 \mathrm{~nm}(\sim 6 \%)$ per mm IP drift (perfect mover resolution).
\square Can correct with IP tuning knobs (which have to be applied every few days to combat ground motion and component jitter effects anyway).
\square Following a drift rate of $\sim 1 \mathrm{~mm} /$ year looks bearable, something like 10mm / year may be more tricky (would need more detailed studies with simulations).
\square What about beam position in outgoing beam pipe in FD cryomodules given intention to move modules ~mm's?

