Magnetic Field Requirements in the IR

Sergei Seletskiy

IRENG07•September 17-21, 2007

September 18, 2007

- Our goal is to study the effect of parasitic magnetic field, "leaking" from the detector solenoid, on the beam at the IP.

- The tool suitable for studies has to allow simulation of beam kinematics in the customary distributed solenoidal field overlapping with quads and higher multipoles.
- We developed the code that allows one to do necessary simulations.
- The code been checked for analytically calculable models.
- Also, the code was checked versus Turtle model for zero DS field.
- Plus to it, we compared the new code with Andrei, Yuri \& Brett results for NLC beam (SiD, 20mrad angle). In their simulations they used DIMAD model with IR sliced in 10^{n} elements that included proper solenoid, quad, sextupole and octupole components of the field.

- Recently, the SR effect on the beam has been also included in the code. SR block has been checked with semi analytical formulas.
- To give our simulations a touch of reality, we first of all compensate the beam coupling and trajectory displacement with the AS.

$$
\sigma_{y} / \sigma_{y 0}=21 ; y_{\mathrm{fn}}=13 \mathrm{um}
$$

- $\operatorname{SiD} ; L^{*}=351 \mathrm{~cm}$
$\sigma_{y} / \sigma_{y 0}=1.5 ; y_{f n}=0.6 u m$

$$
2 \times 10^{-5}
$$

- SiD; $L^{*}=351 \mathrm{~cm} ; B z$ (parasitic)${ }^{\star} L=835 G^{\star} 1 \mathrm{~m}$
- First we consider the effect on the beam of 1 m long Bz bump

- SiD; $L^{\star}=351 \mathrm{~cm} ; B z$ (parasitic)${ }^{\star} L=835 G^{\star} 1 \mathrm{~m}$

- SiD; $L^{\star}=351 \mathrm{~cm} ; B z$ (parasitic)*L=50G*16.7m
- Next we study the case of uniformly distributed parasitic Bz field.

- SiD: L*=351 cm; Bz(parasitic)*L=50G*16.7m

- Moving the Bz bump along the axis to see where its effect is largest.

- It looks reasonable to place it at 7 m from the IP
- The offset is to be compared with:
- $\frac{1}{4}$ sigma or 1 nm of maximum tolerable bunch-to-bunch jitter in the train with 300ns between bunches
- roughly 100 nm , which intratrain feedback can follow with time-constant of ~ 100 bunches (0.03 ms).
- about 500 nm of train-to-train offset, which intratrain feedback can comfortably capture ($0.2 s$ between trains)
- The coupling effect should be compared with desired tuning stability time, say 10 hours (for this exercise we choose to allow $\sigma_{y} / \sigma_{y}=1.05$)
- Note, that in Andrei Seryi's talk for August 15 preparation meeting he had conservative limits of 10 nm and 100 nm for 30 us and 0.2 s respectively. For these studies we take the limits provided by Glen White.

Results

- Finally we get:

	$L^{*}=351 \mathrm{~cm}$		$\mathrm{~L}^{*}=450 \mathrm{~cm}$		
	SiD	GLD	SiD	LDC	GLD
$\mathrm{t} \sim 300 \mathrm{~ns}$	$0.35-0.46$	$0.35-0.5$	$0.24-0.37$	$0.24-0.36$	$0.24-0.36$
$\mathrm{t} \sim 0.03 \mathrm{~ms}$	$35-46$	$35-50$	$24-37$	$24-36$	$24-36$
$\mathrm{t} \sim 0.2 \mathrm{~ms}$	$175-230$	$175-250$	$120-185$	$120-180$	$120-180$
$\mathrm{t} \sim 10 \mathrm{hrs}$	$35-100$	$50-70$	$40-100$	$60-200$	$65-100$

1 m bump - spread field [G•m]

- What level of field "leakage" can we expect to have in the IR?
- Josef Frisch and Steve Smith measured 120nT of the magnetic field at 50 Hz at the ATF Damping Ring at KEK with a pickup coil (of course this measurement is not much relevant to our studies).
- $120 \mathrm{nT} \cdot 16.73 \mathrm{~m}=2 \cdot 10^{-2} \mathrm{Gm}$ and our tolerance at 50 Hz in the worst case is $\sim 30 \mathrm{Gm}$.
- Nevertheless, it would be nice to see the measurements of "parasitic" fields at different frequencies produced by a solenoid similar to the DS.

