

Backscattering of photons into the ILC Detectors from Beam Losses Along the Extraction Lines

Contents

- Introduction
- Backscattered photons from disrupted beam losses
- Mokka simulation & Marlin Reco
- Conclusion & prospects

IRENG07
Olivier Dadoun
dadoun@lal.in2p3.fr
September 17-21, 2007

Introduction

- In spite of all the attention put in the design, the extraction will be the place of secondary particles generation
- Several origins:
 - Disrupted beam particles
 - Synchrotron radiation
 - (beamstrahlung, e+e-pairs, radiative Bhabhas)
- Several locations
 - BeamCal mask
 - Beam pipe
 - Collimator ...
 - Beam dump
- We would like to quantify the number of backscattered particles* which can reach the detector in order to predict the hits they can induce

^{*} for the different extraction lines and different detectors concept

- How many hits will be induced by backscattered photons in the detectors ?
- How many backscattered photons can pass through the smallest aperture in the extraction line, i.e the BeamCal (with a radius to protect the VD), and still create background in the detector?
- Illustration using the disrupted beam losses in the 2mrad extraction line, but arguments and methods are general (Robert talk's)

2mrad disrupted beam losses (QEX1COLL)

Main processes for backscattered γ

Backscattered g from cascades of processes:

- Bremsstrahlung
- Compton
- if e+, annihilation
- Xray emission

(can not be seen here due to our energy threshold)

Backscattered γ spectrum

How many γ can pass through the 1.2 cm BeamCal radius (with θ ~1.2cm/45m) ?

Extrapolation using flatness of cos θ distribution

How many hits they will produce in the VD?

Mokka Simulation & Marlin reco.(1)

γ generated at the IP

Mokka Simulation & Marlin reco.(1)

Mokka Simulation & Marlin reco.(2)

γ generated with very small angle

VD Hits in the minimal 2mrad

Assuming the same energy spectrum for the beam particles lost on collimators, the fraction of VD hits from other backscattered γ emission sources will be the same: ~ 2.2%

	D[m]	X[cm]	P[kW]	#γs/BX	VD hits/BX
QEX1COLL	45	20	0.2	1.3	0.02
QE2COLL	53	-	0	0	0
BHEX1COLL	76	41	0.1	0.2	0.004
COLL1	131	85	52.3	40	8.0
COLL2	183	115	207.5	82	1.8
COLL3	286	-	0	0	0

Conclusion & prospects

- Back-scattered photons due to disrupted beam losses in the 2mrad produce negligible effects in the VD
- Further studies planned include a more complete analysis of all photon emission sources (synchrotron radiation from QD0 for example)

Comment:

Backscattered γ energy from QD0 SR (Cu for the septum material @ 90 m)

2200 γ/BX at the IP * 2.2% ~ 50 VD hits/BX < 300 direct hits from incoherent pairs

Conclusion & prospects

- Back-scattered photons due to disrupted beam losses in the 2mrad produce negligible effects in the VD
- Further studies planned include a more complete analysis of all photon emission sources (synchrotron radiation from QD0 for example)
- Further studies planned include other backscattered particles (neutron)
- Study the other IR geometries under consideration including backscattering from the main beam dump and taking into account multiple reflections on the beam pipe