Mechanical Studies

Joel Goldstein

University of Bristol

LCFI Collaboration

ILC Vertex Detector Review, FNAL 25/10/07

LCFI Mechanical Work

I. Support Prototyping

- RVC and SiC Foams
- Carbon Fibre
- Shells
- 2. Conceptual Design
 - Check Compatibility
- 3. Cooling studies
 - Test Rig and Simulations

Conceptual Design

- 5 layers, inner radius ~ 1.5 cm
- Gas cooling
 - ▶ 0.1% X₀ per layer
 - Uniform material distribution

LCFI

Q_X

Optimisation

- Layout barrel vs endcaps
- Material in active volume
- Material outside
 - May depend on sensors, electronics etc.
 - material, temperature...
 - Needs input from simulations and studies
 - tools becoming available

Support Options

Material target equivalent to 100 µm silicon

- Thinning silicon to 50-100 µm becoming routine
- Thinning to epitaxial possible
 - Ladders with bulkheads
 - I. Unsupported silicon
 - can't control lateral curl
 - 2. Laterally stiffened silicon
 - 3. Rigid structures

- 2D scanning system based on Keyence LK-3010M
- Gas-cooled cryostat capable of ~180K

Thin Substrates

- Tensioned along length
- Lateral stiffness from substrate
 - Beryllium: stiff, but bad CTE
 - Diamond, SiC, etc....
 - Carbon fibre most promising
 - 0.09% X₀ test model
 - laterally stability insufficient

Foam Ladders

- 25 micron silicon on 1.5mm 8% SiC
 - Very rigid
 - Achieved 0.14% X₀

- 20 micron silicon sandwiching 1.5mm 2% carbon
 - Could be double-sided
 - Achieved 0.07% X₀

Silicon Carbide

- Samples of 8% and 6% relative density obtained
 - Lower density believed possible
 - Processing and measuring techniques being investigated

QX

RVC Foam

- Reticulated Vitreous Carbon
 - ▶ 2-3% relative density
 - Not stiff enough for one-sided

RVC Results

• Overall shape due to asymmetry in production

- New fixturing being made
- "Rippling" believed to be an artefact

FEA Study of RVC

LCFI

0×

Conceptual Design

- Checking feasibility
- Thick foams not easy
 - Layers 1&2 crowded
 - Some sensors at large radii
 - Double-sided layers ...?
 - CF shells...?

CF Shells

- CDF and DZero innermost silicon layers
- Prototyping 25cm long ILC structure

- 90°/10° uniaxial layup did not hold shape on release
- Trying 2D weave

Other Concepts

- Combine technology
 - e.g. 2 layers CF shell, 2 double-sided foam
- Complete foam structure

Cooling Studies

- Model of I/4 barrel
 - ► 30W equivalent
 - ▶ ~0.2 m/s average flow
- Calibrating CFD and FSI tools

0 24602 May

The Next Steps

- Prototypes of RVC, SiC Ladders
 - Closer to real ladders
 - Detailed tests of production, robustness...
- Evaluate shells and other alternates
 - Collaboration with other groups
- Begin to explore I&I issues
 - Metrology/alignment/monitoring/...
- Build for the future

* Full engineering designs* Realistic ladders in test beams

LCFI Summary

- Strong involvement in algorithms and physics studies
 ✓ State of the art vertexing package released
- Column Parallel CCDs perform well at 20 MHz with custom clock driver CPD I
 - ✓ Run at 45 MHz with transformer drive
- CPCCD readout chip CPR2 runs at 9 MHz
 - ✓ Improved version CPR2A ready soon
- Have proof of principle for ISIS and actively looking for vendors for next generation ISIS2
- Actively exploring various mechanical solutions based on foams and thin silicon
- Ready to demonstrate a full scale ladder prototype in the next funding cycle