

Optimising CMOS Pixel Sensors for the ILC Micro-Vertex Detector

Marc Winter (IPHC/Strasbourg)

on behalf of DAPNIA/Saclay, LPSC/Grenoble, LPC/Clermont-F., DESY, Uni. Hamburg & IPHC/Strasbourg

contributions from IPN/Lyon, Uni. Frankfurt, GSI-Darmstadt, STAR coll.(LBNL, BNL), JINR-Dubna

▷ More information on IPHC Web site: http://wwwires.in2p3.fr/ires/web2/rubrique.php3?id_rubrique=63

OUTLINE

- Reminder on CMOS sensors: \Rightarrow Specific advantages \Rightarrow R&D framework : Vxing applicationS
- Achieved performances with analog output sensors (AMS-0.35 OPTO fab. process) :
 - \Rightarrow Detection efficiency \Rightarrow Spatial resolution \Rightarrow Operating temperature \Rightarrow Radiation tolerance
- Fast read-out architecture: \Rightarrow State of the art \Rightarrow Plans until 2009/10
- Integration issues: ⇒ Thinning ⇒ Ladder design ⇒ Data flow
- Summary

p-type low-resistivity Si hosting n-type "charge collectors"
signal created in epitaxial layer (low doping):
Q ~ 80 e-h / μm → signal ≤ 1000 e⁻
charge sensing through n-well/p-epi junction
excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)

Specific advantages of CMOS sensors:

CMOS-VD

- \diamond Signal processing μ circuits integrated on sensor substrate (system-on-chip) \mapsto compact, flexible
- \diamond Sensitive volume (\sim epitaxial layer) is \sim 10–15 μm thick \longrightarrow thinning to \sim 30–40 μm permitted
- \diamond Standard, massive production, fabrication technology \longrightarrow cheap, fast turn-over
- ♦ Room temperature operation
- Attractive balance between granularity, mat. budget, rad. tolerance, r.o. speed and power dissipation
 - \Join Very thin sensitive volume \rightarrow impact on signal magnitude (mV !)
 - \bowtie Sensitive volume almost undepleted \rightarrowtail impact on radiation tolerance & speed
 - ▶ Commercial fabrication (parameters) → impact on sensing performances & radiation tolerance

Numerous different chips addressing 2 types of topics :

- ♦ Various generic issues influencing detection performances
 ♦ Specific application requirements
 - fabrication technology details: epitaxy thickness, doping profile, I_{leak} , yield, ...
 - pixel design: charge collection, leakage current removal, ion. rad. tol. design, ...
 - signal processing μ circuits: CDS/pixel, discri. & ADC at column end, Ø μ circuits, ...
 - repeat small prototype design with large sensors : yield, capacitive effects, offeset dispersion, ...
 - optimise generic design for each specific application : develop chips dedicated to each application

20 MIMOSA sensors designed, fabricated in 7 different fabrication technologies:

- AMS-0.6 μm : MIMOSA-1, MIMOSA-5 MIETEC-0.35 μm (became AMI-0.35 μm): MIMOSA-2 and -6
- IBM-0.25 μm : MIMOSA-3 TSMC-0.25 μm : MIMOSA-8 and -10 STM-0.25 μm : MIMOSA-21,-21A,B,C
- AMS-0.35 μm without epitaxial layer: MIMOSA-4, -12 and -13
- AMS-0.35 μm OPTO with epitaxial layer: MIMOSA-9, -11, -14, -15, -16, -17, -18, -19, -20 and -22

Specific difficulties:

- Analog part of most sensors cannot be simulated reliably (lack of doping profile details, etc.)
- ◇ R&D addresses simultaneously detection system & signal processing parts integrated on same substrate

Vertexing Applications of MIMOSA Chips: Short & Mid-Term

Vertex Detector upgrade for STAR expt at RHIC

- ightarrow 2 cylindral layers : \sim 1600 cm 2
- $m \simeq \gtrsim$ 160 million pixels (\leq 30 μm pitch)
- $\stackrel{\frown}{=}$ 2 steps :
 - \diamond 2007: telescope (3 chips) \rightarrowtail BG meast, no pick-up !
 - \diamond 2008: digital outputs without \emptyset (\leq 640 μs)
 - \diamond 2010: digital outputs with integrated \emptyset (\leq 200 μs)

Beam telescope (FP6 project EUDET)

- ightarrow provide \lesssim 1 μm resolution on 3 GeV e $^-$ beam (DESY)

 $\stackrel{\frown}{=}$ 2 steps :

- \diamond 2007: analog \rightarrowtail telescope commissionned & running
- \diamond 2008: digital with integrated \varnothing (\sim 100 μs)

ILC vertex detector (option)

CMOS-VD

- \simeq 5–6 cylindrical layers : \gtrsim 3000 cm 2
- \simeq 300-500 million pixels (20–35 μm pitch)
- ightarrow read-out times \sim 25 (L0), 50 (L1) & 100 (L2-4) μs
- ightarrow 1st complete ladder prototype \gtrsim 2010

CBM vertex detector (FAIR/GSI)

- ightarrow 2 rectangular layers : \sim 500 cm 2
- ightarrow 150 million pixels (\sim 20 μm pitch)
- $\mathbf{\hat{-}}$ read-out time \sim 10 μs

Overall objective: identify \sim all flavours involved in most final states

Ex: $e^+e^- \rightarrow ZH \implies$ measure Br ($H \rightarrow c\overline{c}, \tau^+\tau^-, b\overline{b}, gg, ...$)

In practice:

 \triangleright tag c and τ jets with unprecedented efficiency & purity (b tagging much less challenging)

 \triangleright reconstruct very efficiently $Vx1 \rightarrow Vx2 \rightarrow Vx3 \rightarrow ...$

▷ reconstruct vertex flavour and electrical charge ...

 \triangleright cope with high jet multiplicity final states containing several $\mathbf{b}, \mathbf{c}, \tau$ jets

> minimise secondary interactions (missleading particle flow reconstruction)

⊳ etc.

 $\sigma_{IP} = \mathbf{a} \oplus \mathbf{b}/\mathbf{p} \cdot \mathbf{sin^{3/2}} \theta$ with $\mathbf{a} <$ 5 μm and $\mathbf{b} <$ 10 μm

 \triangleright limits on ${f a}$ and ${f b}$ are still "very educated guesses" \triangleright SLD: ${f a}$ = 8 μm and ${f b}$ = 33 μm

• $\sigma_{f sp} \lesssim 3 \mu {f m}$ • R $_{in} \sim$ 1–2 cm • R $_{out} \sim$ 4·R $_{in}$ • VD layer \sim 0.1–0.2 % X $_0$ • beam pipe \sim 0.1 % X $_0$

Constraint on σ_{IP} satisfies simultaneoulsy requirement on 2-hit separation in inner most layer (\sim 30–40 μm)

Constraints from the Running Conditions

- Overall objective: come as close as possible to IP ightarrow minimise ${f a}$ and ${f b}$ ($\propto {f R_{in}}$)

 \Rightarrow beam background induced by high luminosity :

Beamstrahlung e^{\pm} \Rightarrow inner layer constraints prevent a & b to be well below their upper bounds

 \hookrightarrow Inner most layer: BG generates O(10⁷) hits/s while Physics generates O(10²) hits/s

In practice:

CMOS-VD

- \triangleright experimental magnetic field should be as high as possible (\sim 3–5 T) \mapsto sweep away most ${f e}_{BS}^{\pm}$
- $ightarrow \mathbf{e}_{\mathbf{BS}}^{\pm}$ rate still \lesssim 5 hits/cm²/BX at R=15 mm (\sqrt{s} = 500 GeV, 4 T) ightarrow O(10³) pixels /cm²/10 μs
- \triangleright foster high read-out speed in inner layers against occupancy \lesssim few tens of $\mu {f s}$
- ▷ rad. level not negligible at T_{room} (mat. budget ?): ~ 50 kRad/yr 6·10¹¹ $e_{10~MeV}^{\pm}$ ≈ 2·10¹⁰n_{eq}/cm²/yr
- ▷ prediction accuracy \Rightarrow prepare for 3 ? 5 ? times more BG \rightarrow ~ 500 kRad/3 yr ~ ~ 2.10¹¹n_{eq}/cm²/3 yr

 \diamond neutron dose integrated over 3 years much smaller : \lesssim 3.10¹⁰ n_{eq}/cm² (safety factor of 10)

Power dissipation : avoid increasing mat. budget & complexity with heavy cooling \Rightarrow air flow

- \diamond exploit beam time structure: \sim 1 ms train (\sim 3000 buckets) every \sim 200 ms \Rightarrow duty cycle \sim 1/200
 - \Rightarrow switching off the sensors between trains may allow power reduction by factor of \sim 100

EMI : fear that beam delivery elements may be source of very short λ EM field

R&D on sensor architecture with memories integrated in pixels started a few years ago

 \hookrightarrow in standby since 2006 (lack of manpower) \Rightarrow not reviewed in this report

CMOS-VD - M.I.P. Detection with CMOS Sensors

■ ~ 100 chips (M1, M2, M4, M5, M8, M9, M11, M14, M15, M16, M17, M18) tested on H.E. beams since 2001 at CERN-SPS & DESY, mounted on Si-strip telescope (calibrated with 55 Fe) \mapsto well established perfo. (analog output):

- Best performing technology: AMS 0.35 μm OPTO $ightarrow \sim$ 11 & 15 μm epitaxy (called epi-14 and epi-20)
- N \sim 10 e⁻ ENC \mapsto S/N \gtrsim 20 30 (MPV) at room Temperature

- Technology without epitaxy also performing well : very high S/N but large clusters (hit separation \searrow)
- Macroscopic sensors : MIMOSA-5 (\sim 3.5 cm 2 ; 1 Mpix); MIMOSA-20 (1x2 cm 2 ; 200 kpix); MIMOSA-17 (0.8x0.8 cm 2 ; 65 kpix)

CMOS-VD

Detection efficiency:

- Ex: MIMOSA-9 data (20, 30 & 40 μm pitch)
- $\epsilon_{det} \gtrsim$ 99.5–99.9 % repeatedly observed at room temperature
- $T_{oper.} \gtrsim 40\,^{\circ}$ C

Efficiency vs rate of fake clusters :

CMOS-VD

Single point resolution versus pixel pitch:

clusters reconstructed with eta-function, exploiting charge sharing between pixels

σ_{sp} ~ 1.5 μm (20 μm pitch) → ≤ 3 μm (40 μm pitch)

recent result: σ_{sp} ≤ 1 μm for 10 μm pitch

obtained with signal charge encoded on 12 bits

 $\sigma_{{
m sp}}$ dependence on ADC granularity:

- minimise number of ADC bits
 - \rightarrow minimise dimensions, t_{r.o.} & P_{diss}
- ⇔ effect simulated on real MIMOSA data (20 μm pitch ; 120 GeV/c π^- beam)

▷▷ $\sigma_{sp} < 2 \ \mu m$ (4 bits) \rightarrow 1.7–1.6 μm (5 bits) (MIMOSA-9 : 20 μm pitch: T= + 20°C)

- \Rightarrow Caution : results based on simple pixel (N \leq 10 e⁻ENC)
 - \Rightarrow rad. tol. pixel integrating CDS (N \leq 15 e⁻ENC) not yet evaluated

Observed Radiation Tolerance

of MIMOSA Sensors

CMOS-VD

Requirements:

※ beamstrahlung (GuineaPig X 3):
$$\lesssim$$
 10³ e[±]_{BS}/cm²/25 μs → \lesssim 2·10¹²e[±]_{BS}/cm²/yr
→ O(100) kRad/yr − O(10¹¹) n_{eq}/cm²/yr (NIEL ~ 1/30)

***** neutron gas: $\leq 10^{10} \text{ n}_{eq}/\text{cm}^2/\text{yr}$

Non-ionising radiation tolerance:

***** MIMOSA-15 irradiated with O(1 MeV) neutrons tested on DESY e⁻ beams : Very Preliminary results

• T = - 20 $^\circ$ C, t $_{r.o.}$ \sim 700 μs	Fluence	0	0.47	2.1	5.8 (5/2)	5.8 (4/2)
\circ 5.8 \cdot 10 12 n $_{eq}$ /cm 2 values derived	S/N (MPV)	$\textbf{27.8}\pm0.5$	$\textbf{21.8}\pm0.5$	$\textbf{14.7}\pm\textbf{0.3}$	8.7 ± 2.	7.5 ± 2.
with standard and with soft cuts	Det. Eff. (%)	100.	$\textbf{99.9}\pm0.1$	$\textbf{99.3}\pm0.2$	77. \pm 2	84. ± 2.

Ionising radiation tolerance:

- * Pixels modified against hole accumulations (thick oxide) and leakage current increase (guard ring)
- * MIMOSA-15 tested with \sim 5 GeV e⁻ at DESY after 1 MRad (10 keV X-Ray) exposure : Very Preliminary results

• T = - 20 $^{\circ}$ C, t $_{r.o.}$ \sim 180 μs	Integ. Dose	Noise	S/N (MPV)	Detection Efficiency
• $t_{r.o.} \ll 1$ ms crucial at T_{room}	0	9.0 ± 1.1	27.8 \pm 0.5	100 %
	1 MRad	10.7 \pm 0.9	19.5 \pm 0.2	99.96 \pm 0.04 %

Preliminary conclusion:

* at least 3 years of running viable at T_{room} (or close to)

* further assessment needed (also with \sim 10 MeV e⁻) : sensors with integ. CDS, ADC,

Investigation of sensitivity to \sim 10 MeV electrons (NIEL factor \sim 1/30)

 \hookrightarrow similar to beamstrahlung e $^\pm$ in 4 T field at 15 mm radius

- 1) MIMOSA-9 exposed to $10^{13} e_{9.4MeV}^{-}$ /cm² in Darmstadt : equivalent to \leq 300 kRad/cm² and \sim 3.10¹¹n_{eq}/cm²
- 2) Irradiated chip tested with \sim 6 GeV e $^-$ at DESY
 - \hookrightarrow Test result at -20°C : S/N \sim 23 $\mapsto \epsilon_{det} > 99.3\%$ (before irradiation: S/N \sim 28 and ϵ_{det} = 99.93 \pm 0.03 %)

> Sensors still need to be tested at room temperature (compatible with very light cooling system)

Integration of Signal Processing

Inside Pixels and on Chip Periphery

- 2) Develop ILC sensors (mainly for inner layers) extrapolating from EUDET & STAR:
 - $\diamond~$ increase row read-out frequency by \sim 50 %
 - replace discriminators with ADCs

CMOS-VD

High Read-Out Speed Architecture : 1st Prototype

MIMOSA-8: TSMC 0.25 μm digital fab. process (< 7 μm epitaxy)

- 32 // columns of 128 pixels (pitch: 25 μm)
- ullet read-out time \sim 50 μs (resp. 20 μs) with (resp. without) DAQ
- on-pixel CDS
- discriminator (and DS) integrated at end of each of 24 columns

Excellent m.i.p. detection performances despite modest thickness of epitaxial layer

st det. eff. \sim 99.3 % for fake rate of \sim 0.1 % st discri. cluster mult. \sim 3–4 st P $_{diss}$ \lesssim 500 μ W / col.

 $\triangleright \triangleright$ Architecture validated for next steps: techno. with thick epitaxy, rad. tol. pixel at T_{room}, ADC, Ø, etc.

High R.-O. Speed Architecture : 2nd Prototype = MIMOSA-16

MIMOSA-16 design features :

- AMS-0.35 OPTO translation of MIMOSA-8 $\hookrightarrow \sim$ 11–15 μm epitaxy instead of \lesssim 7 μm
- \bullet 32 // columns of 128 pixels (pitch: 25 μm)
- on-pixel CDS (DS at end of each column)
- 24 columns ended with discriminator
- 4 sub-arrays :

CMOS-VD

- S1 : like MIMOSA-8 (1.7x1.7 μm^2 diode)
- S2 : like MIMOSA-8 (2.4x2.4 μm^2 diode)
- S3 : S2 with ionising radiation tol. pixels
- S4 : with enhanced in-pixel amplification (against noise of read-out chain)

Tests of analog part ("20" & "14" μm epitaxy) :

- ullet sensors illuminated with 55 Fe source and F $_{r.o.}$ varied up to \gtrsim 150 MHz
- measurements of N(pixel), FPN (end of column), pedestal variation, CCE (3x3 pixel clusters) vs $F_{r.o.}$

M.i.p. detection with Si-stip telescope studied at CERN in Sept. '07 ightarrow characterisation of digital response :

- $ullet \pi^-$ beam of \sim 180 GeV/c
- measurements of SNR, det. efficiency, fake rate, cluster characteristics, spatial resolution vs discri. threshold

Pixel noise and charge collection efficiency ("20 μm epitaxy :

Chip#0 (old mezzanine board)

Columns 28-31

\Rightarrow Noise performance satisfactory (like MIMOSA-8 and -15)

- \Rightarrow CCE: very poor for S1 (1.7x1.7 μm^2) & poor for S2/S3 (2.4x2.4 μm^2)
- ightarrow already observed with MIMOSA-15 but more pronounced for "20 μm " option
- \hookrightarrow suspected origin: diffusion of P-well, reducing the N-well/epitaxy contact, supported by CCE of S4 (4.5x4.5 μm^2 diode)

4

MIMOSA-16 Beam Test Results (Digital Part)

CERN-SPS (\sim 180 GeV π^-) \rightarrow preliminary analysis results of S4 ("14 μm " epitaxy)

Read-out time \sim **50** μs (\sim 1/4 of max. freq. due to DAS limitations)

CMOS-VD

Major result \rightarrowtail at least one pixel architecture validated for next steps : S4 (SNR \sim 16)

Discri. Threshold	det. efficiency	fake rate	sgle pt resolution
4 m V	99.96 \pm 0.03 (stat) %	\sim 2 \cdot 10 $^{-4}$	\sim 4.8–5.0 μm
6 m V	99.88 \pm 0.05 (stat) %	$< 10^{-5}$	\sim 4.6 μm

Next steps :

- *Mid-term : EUDET, STAR* \rightarrow *real experimental conditions;* \sim *ILC VD outer layer requirements*
- Long-term full sensor prototyping : ILC (mainly inner layers), CBM

Integrated $\varnothing
ightarrow$ real scale sensors without ADC ($\sigma_{sp} \sim$ 4–6 μm) :

- * EUDET telescope (2008)
- * STAR-HFT (2010)
- **★ CBM-MVD (201X)**

Integrated 4-5 bit ADC replacing discriminators and increased read-out speed :

* prototype for ILC-VD (2008/09)

* read-out speed \rightarrow CBM-MVD (201X)

Several different ADC architectures under development at IN2P3 and DAPNIA

- ⇔ LPSC (Grenoble): Ampli + semi-flash (pipe-line) 5- and 4-bit ADC for a column pair
- ⇔ LPCC (Clermont) : flash 4+1.5-bit ADC for a column pair
- ⇒ DAPNIA (Saclay) : Ampli + SAR (4- and) 5-bit ADC

⇒ IPHC (Strasbourg) : SAR 4-bit and Wilkinson 4-bit ADCs

Lab	proto.	phase	bits	chan.	F _{r.o.} (MHz)	dim. (μm^2)	${\sf P}_{diss}$	eff. bits	Problems
LPSC	ADC1	tested	5	8	15-25	43x1500	1700 μW	4	Offset & N
	ADC2	tested	4	8	25	40x943	800 μW		
	ADC3	fab	4	> 8	25				
LPCC	ADC1	tested	5.5	1	5(T)–10(S)	230x400	20 000 μW	2.5	P_{diss} & bits
	ADC2	fab	5.5	1	10	40x1100	1000 μW		
DAPNIA	ADC1	tested	5	4	4	25x1000	300 μW	\gtrsim 2	Missing bits
	ADC2	fab	5	4	4	25x1000	300 μW		
IPHC	ADC1	fab	4	16	10	25x1385	660 μW		
	ADC2	fab	4	16	10	25x1540	545 μW		

 \Rightarrow 1st mature ADC design expected to come out in 2007/08

 \Rightarrow Submission of 1st col. // pixel array proto equipped with ADCs in Summer 2008 (?) \rightarrow with integ. \emptyset in 2009

- 1st chip (SUZE-01) with integrated Ø and output memories (no pixels) :
 - * 2 step, line by line, logic :
 - \diamond step-1 (inside blocks of 64 columns) : identify up to 6 series of \leq 4 neighbour pixels per line delivering signal > discriminator threshold
 - \diamond step-2 : read-out outcome of step-1 in all blocks and keep up to 9 series of \leq 4 neighbour pixels
 - * 4 output memories (512x16 bits) taken from AMS I.P. library
 - $\%\,{\rm surface}\sim {\rm 3.9}\times {\rm 3.6}\,{\rm mm}^2$
 - \hookrightarrow 10 keuros (funding via EUDET)

Status :

- * sent for fabrication end of July
- * back from foundry end of Sept. \rightarrow tests under preparation \Rightarrow test completion expected by end of year

CMOS-VD

\clubsuit Extension of MIMOSA-16 \rightarrowtail larger surface, smaller pitch, optimised pixel, JTAG, more testability

Pixel characteristics (optimal charge coll. diode size ?) :

- # pitch : 18.4 μm (compromise resolution/pixel layout)
- st diode surface : \sim 10–15 μm^2 to optimise charge coll. & gain
- * 128 columns ended with discriminator
- * 8 columns with analog output for test purposes
- * 9 sub-matrices of 64 rows : various pixel designs w/o ionising rad. tol. diode

 \Rightarrow active digital area : 128 x 576 pixels (\sim 25 mm²)

st read-out time \sim 100 μs

Testability :

 ※ JTAG + bias DAC → programmable chip steering
 ※ 2 additionnal DC voltages to emulate pixel's output for independent discriminator performance assessment
 ※ output frequency ≤ 40 MHz

Status :

 ★ Design close to completion \rightarrow submission by end of Oct. '07 ★ Funding (\sim 50 mm²): \sim 40 keuros (2/3 payed via EUDET)

CMOS-VD

Autumn 2008 : MIMOSA-22+ = Final EUDET Sensor * MIMOSA-22 complemented with \emptyset (SUZE-01) 1 or 2 sub-arrays (best pixel architectures of MIMOSA-22) Active surface : 1088 columns of 544/576 pixels (20.0 x 10/10.5 mm²) st Read-out time \sim 100 μs * Chip dimensions : \sim 20 x 12 mm² \triangleright Opportunity for an engineering run combining various chips (pixel+ADC ?): \sim 120 keuros for 6 diced and thinned wafers (\sim 60 % via EUDET) Devts performed in *//* : * June 2008 : submission of final STAR-HFT1 sensor $ightarrow \sim 2 \times 2 \text{ cm}^2$ * 400 kpix/sensor $* \leq 640 \ \mu s$ 50 μm thin \hookrightarrow equip 2 or 3 sectors of 1 + 3 ladders (10 chips) * Summer/Autumn 2008 : MIMOSA-16 with ADCs replacing discri.

(24 columns of 128 pixels r.o. in //, with 4- or 5-bit ADC ending each col.)

Beyond 2008:

- MIMOSA-22 with ADCs replacing discriminators \rightarrowtail outer layers \rightarrowtail inner layers
- st increase r.o. frequency by \sim 50 % (new Ø & memory design) ightarrow inner layers

Integration Issues

Thinning – Ladder design Power cycling – Data Flow

Thinning motivations and constraints :

- \Leftrightarrow thin sensors to \lesssim material budget of "mechanical support" (+ beampipe)
- ⇔ minimal thickness of CMOS sensors :

10–15 μm (metal layers and SiO₂) + 15 μm (T + epitaxy) + 5–10 μm (substrate) pprox 30–40 μm

- thinned sensors should be "easy" to handle
- ⇔ thinning procedure should have high mechanical yield and preserve detection performances
- \Leftrightarrow CMOS technology fab. yield \rightarrow foster diced sensors (despite few per-mill X₀ add. mat. budget)
- ⇔ thinning of individual sensors seems preferable to full wafer thinning : cheaper but same quality ?

MIMOSA-5 : 6" wafer

Status of Thinning Studies and Ladder Prototyping (STAR)

Predominantly driven by STAR HFT project at LBNL

Thinning of MIMOSA-5 wafers :

CMOS-VD

- \Rightarrow 3 wafers thinned via LBNL to 50 \pm 5 μm
- result satisfactory (after pre-dicing):

sensors can be manipulated and mounted on support

⇔ 3 ladder prototypes fabricated at LBL ($\gtrsim 0.25 \% X_0$)
 → up to 9 sensors mounted on ladder and tested

Thinning of individual sensors to \sim 50 μm :

 \Rightarrow several chips of \sim 0.2 – 3.5 cm² (MIMOSA-5, -10, -14, -17, -18, -20, etc.) thinned individually via LBNL

- \Rightarrow recent result: MIMOSA-18 prototype thinned to 50 μm was successfuly tested with 55 Fe at IPHC
 - \rightarrowtail no change of performances (e.g. noise, gain)

⇔ Plans: • operate thinned sensors (MIMOSA-17, -18) equipping telescopes (EUDET, TAPI, ...)

- equip STAR-HFT1 with thinned sensors (2008/09) \rightarrow 0.25 0.3 % X₀
- extend development to ILC Vertex Detector (LBNL-ILC team ?) \rightarrow goal \leq 0.2 % X₀

Power cycling

- study performed with MIMOSA-5 at DESY
- \Rightarrow though MIMOSA-5 not at all adapted to power cycling, it was operated with \sim 1/8 duty cycle

 \Rightarrow duty cycle \lesssim 1/50 within reach with suited sensor design

Data flow:

- \Rightarrow data flow / layer assessed at row, sensor, ladder, layer and full detector levels for BG imes 1 and imes 3–5
- \Rightarrow whole detector data flow expected to amount to \sim 0.2 to 1 GB/s , depending on e_{BS}^{\pm} rate
- ⇔ instantaneous flow from row in inner most layer may be critical : up to 200 Bytes per 100 ns

New concept of mechanical support & heat extractor:

 \Rightarrow objective : mount, connect & operate \leq 10 MIMOSA-17 sensors, thinned to 50 μm , on 50–100 μm thin, aluminised, CVD diamond slabs \equiv mech. support – heat extractor - cable support

 \Leftrightarrow status : 3 diamond 3" wafers fabricated \rightarrow electroplating and lithography

General remarks :

- CMOS sensors call for SPECIFIC system integration solutions : connexions (flex cable), data flow, ...
- \Rightarrow Lack of studies going on (expertised manpower) \Rightarrow may become a Problem

CMOS-VD

Example of Basic Vertex Detector Design features

ILD geometry: \geq 5 cylind. layers (R = 15–60 mm), $||cos\theta|| \leq 0.90 - 0.96$ \triangleright SiD: shorter barrel & fw/bw disks

L0 and L1 : optimised against occupancy

L2, L3 and L4 : optimised against power dissipation

In Pixel pitch varied from \sim 20 μm (L0–L1) to \gtrsim 30 μm (L2–L4) ightarrow minimise P $_{diss}$

Ultra thin layers: \lesssim 0.2 % X $_0$ /layer (extrapolated from STAR-HFT; \lesssim 40 μm thin sensors)

Very low P_{diss}^{mean} : << 100 W (exact value depends on duty cycle)

Fake hit rate $\lesssim 10^{-5}$ \mapsto whole detector \cong close to 1 GB/s (mainly from e_{BS}^{\pm})

MIMOSA sensors are being developed for running conditions with beam BG >> MC simulations

Fast read-out sensors progressing steadily :

* col. // architecture with discriminated output operational

* ADCs close to final design (\leq Summer 2008)

Ø μ circuits : 1st generation (EUDET, STAR) fabricated \mapsto tests in Nov. '07

AMS-035 OPTO fabrication technology assessed $\rightarrow \rightarrow$ baseline for R&D :

* detection efficiency (T), spatial resolution, radiation tolerance, noise \rightarrow fake hits, etc.

 \hookrightarrow equip demonstrators (EUDET, CBM, STAR, ...) with full scale sensors operated in real exptal conditions (T_{room})

Milestones until final chip well identified :

***** 1st step : final sensors with discriminated binary charge encoding for EUDET (2008) and STAR (2010)

st 2nd step : replace discri. with ADC (outer layers) and increase r.o. frequency by \sim 50 % (inner layers)

st also: find final fabrication process (< 0.2 μm feature size)

Concern : system integration issues not covered \rightarrow prototype ladder ????

Next : 3DIT MIMOSA \equiv 4 chip sandwich of best techno. for sensing, for analog, for mixed, and for digital circuits

BACK-UP SLIDES

Pixel design :

- st adapt existing pixel architectures from 25 μm to < 20 μm pitch
- st adapt sensing diode dimensions to maximise CCE (surface \nearrow) & gain (surface \searrow) : optimum \sim 10–15 μm^2
- ▶ find optimal pixel pitch : single point resolution (pitch \searrow) against reliable design (pitch \nearrow)

Column read-out architecture :

- st adapt existing S&H and discriminators from 25 μm to < 20 μm pitch
- $\ensuremath{\overset{\scriptstyle \leftarrow}{\times}}$ integrate $\ensuremath{\ensuremath{\mathcal{O}}}$ and output memories

Row and pixel steering (consequences of large surface) :

- * adapt pixel steering (speed) inside column to avoid capacitance due to large nb of switches \rightarrow pixel design
- * adapt row steering to their length (2 cm)
- Sensor autonomy and testability :
- * JTAG + bias DAC \rightarrow programmable chip steering
- * 2 or 3 additionnal DC voltages to emulate pixel's output for independent discriminator performance assessment

Developments simultaneously oriented towards well focussed applications and towards generic objectives useful to several applications

Application	version	2006	2007	2008	2009	2010	2011
STAR	HFT-1	R&D	final proto.	Prod.			
	HFT-2	R&D	R&D	R&D	proto final	Prod.	
EUDET	BT-1	2 Prod.	commissioned				
	BT-2	R&D	final proto	Prod.			
Imaging		R&D	final proto	Prod. ?			
		1					
Generic topics							
Fast sensors :	o architecture	R&D	R&D	R&D +	R&D ++	ILC proto	CBM proto
	○ ADC	R&D	R&D	final proto	~		
	 digital 	pre-study	R&D	final proto	\nearrow		
Radiation tolerance		R&D	R&D	R&D	R&D	7	
Fabrication technologies		R&D	R&D	R&D	R&D	∕`???	
Thinning		R&D	D	D	OK ???		

AMS 0.35 OPTO engineering run (fabricated in Summer 2006):

 \simeq 2 + 4 wafers (8" \Rightarrow 50 reticles/wafer) \simeq 2 epitaxy thicknesses : \sim 11 & 15 μm \Leftrightarrow "14 μm " & "20 μm " options

\diamond triggered by MIMO \bigstar -3 (= MIMOSA-20) fabrication :

200 kpixels, \sim 2 cm 2 , 2 // outputs, t $_{r.o.} \lesssim$ 4 ms

\diamond includes 8 other chips :

- * MIMOSA-16 : fast col. // archi. like MIMOSA-8
- * MIMOSA-17 (MIMO \pm -3M) : 0.8 x 0.8 cm², rad.tol., 800 μs
- \hookrightarrow EUDET beam telescope arms, CBM Vx Det. demonstrator
- st MIMOSA-18 (IMAGER) : precision \lesssim 1 μm (EUDET: DUT)
- **% MIMOSA-19 bio-med. imaging: special diode shape**
- **※** test structures : in-pixel amplification, discrimination, ...
- * ADCs: flash from LPCC

Status of tests:

- \diamond 2 wafers tested in 2006 (1 with "14" & 1 with "20" μm epitaxy) \mapsto fab. mistake (non uniform effect on sensors)
 - \hookrightarrow not dramatic: "20 μm " option was characterised with 55 Fe source
- \diamond Second batch fabricated in 2007 \mapsto 7 wafers presently under test \rightarrowtail fab. yield

Advent of New Macro-Sensor : MIMOSA-17 = MIMO + -3M

New working horse, superseeding MIMOSA-5 : Faster, much easier to operate, ionising rad. tol., etc. \Rightarrow equip MVD demonstrator

Medium size copy of STAR final sensor prototype : (65 000 pixels instead of 205 000)

- ***** manufactured in AMS 0.35 μm OPTO techno.
 - with \gtrsim 11 μm and \sim 15 μm epitaxial thickness
 - \longmapsto tests started at IPHC (and DESY)
- * ionising rad. hard pixel design (validated with MIMOSA-11/-14)

st 4 matrices of 64 x 256 pixels (30 μm pitch) treated in //

- \longmapsto active area of \sim 8 x 8 mm 2
- * 4 parallel analog outputs at 10 (or 20) MHz
 - \longmapsto frame r.o. time = 1.6 ms (or 800 μs)
- ***** integrated JTAG logic for steering
- *** works at room temperature**

Equips EUDET telescope demonstrator (e.g. 2 arms of 3 planes)

 \longmapsto commissionned in Spring/Summer 2007 at DESY

MIMOSA-20 : CCE for "14" and "20" μm Epitaxy

IPHC Institut Pluridisciplinaire Hubert CURIEN STRASOLARG

Réunion Capteurs CMOS, lundi 26 fevrier 2007

Comparaison pour Mimosa20 entre les deux types de couches épitaxie

MIMOSA-20 ("14" & "20" μm epitaxy) illuminated with ⁵⁵Fe source \rightarrow charge collected in seed pixel, 2x2, 3x3 and 5x5 clusters

ightarrow CCE ("14" μm) \sim 30–40 % higher than CCE ("20" μm)

Main Requirements

for the ILC Vertex Detector :

physics & running condition requirements

 $\sigma_{IP} = \mathbf{a} \oplus \mathbf{b} / \mathbf{p} \cdot \mathbf{sin}^{3/2} \theta$ with $\mathbf{a} < 5 \ \mu m$ and $\mathbf{b} < 10 \ \mu m$

 \triangleright limits on a and b are still "very educated guesses"

 \triangleright SLD: **a** = 8 μm and **b** = 33 μm

Upper bound on a drives the pixel pitch and the radii of the inner and outer layer of the Vx Det.

Upper bound on b drives radius and material budget of inner layer (& beam pipe)

Constraint on σ_{IP} satisfies simultaneoulsy requirement on double hit separation in inner most layer (\sim 30 – 40 μm)

Constraint on a :
$$\mathbf{z_{IP}} \approx \frac{\mathbf{z_0} \cdot \mathbf{R_4} - \mathbf{z_4} \cdot \mathbf{R_0}}{\mathbf{R_4} - \mathbf{R_0}} \implies \mathbf{a} = \sigma_{IP} \approx \frac{(\mathbf{R_4^2} \cdot \Delta \mathbf{z_0^2} + \mathbf{R_0^2} \cdot \Delta \mathbf{z_4^2})^{1/2}}{\mathbf{R_4} - \mathbf{R_0}}$$

• Numerical examples based on ${f R_4}=4\cdot {f R_0}$ (ex: ${f R_4}/{f R_0}$ = 60 / 15 mm or 64 / 16 mm)

 $ightarrow \Delta z_4 = \Delta z_0 = \sigma_{sp} = 3 \ \mu m \Rightarrow a \approx 1.37 \cdot 3 \ \mu m \approx 4.1 \ \mu m$

 $ightarrow\Delta z_4=5\,\mu m$ and $\Delta z_0=2.5\,\mu m$ \Rightarrow $a~pprox~1.5\cdot2.5\,\mu m$ $pprox~3.8\,\mu m$

 \Rightarrow Twice larger pitch in outer layer than in inner most layer satisfies constraint ${
m a} < 5~\mu{
m m}$

$$\triangleright \mathbf{b} < \mathbf{10} \ \mu \mathbf{m} \ \Rightarrow \mathbf{t} \lesssim \mathbf{0.4} \ \%$$
$$\triangleright \mathbf{e_{pipe}} \ \approx \ \mathbf{400} - \mathbf{500} \ \mu \mathbf{m} \ \mapsto \ \frac{\mathbf{e_{pipe}}}{\mathbf{X_0^{Be}}} \sim \mathbf{0.11} - \mathbf{0.14} \ \% \ \mapsto \mathbf{t_{L0}} \lesssim \mathbf{0.25} \ \%$$

Ladders equipped with CMOS sensors & developed for STAR HFT reach already \sim 0.3 % ${f X_0}$

Time Structure for the ILC

Backgrounds

Ist layer (L0) : \gtrsim 5 hits/cm²/BX for 4T / 500 GeV / R_0 = 1.5 cm / no safety factor $\mapsto \lesssim$ 1.8·10¹² e[±]/cm²/yr (safety factor of 3)

2nd layer: 8 times less (direct)
 3rd layer: 25 times less (direct)

Consequences on Occupancy in 1st layer (L0): \leq 0.9 % hit occupancy in 50 μs (r.o. time of TESLA TDR) \hookrightarrow signal spread on \leq 4.5–9 % pixels (cluster multiplicity \sim 5-10)

⇒ 1) aim for shorter read-out time in L0 than in TDR → typically ≤ 25 µs (compromise with power dissipation, multiple scattering, ...)
2) aim for shorter read-out time in L1 than in TDR → typically ~ 50 µs (vs 250 µs) and presumably smaller radius (e.g. ~ 20 – 22 mm) (use tracks extrapolated from L1-4 down to L0)
3) aim for relaxed read-out time in L2, L3, L4: ~ 100 – 200 µs (vs 250 µs)

 \hookrightarrow depends on backscattered e^\pm rate

Consequences on Radiation Tolerance in L0 :

★ dose integrated over 3 years: $\leq 5.4 \cdot 10^{12} \text{ e/cm}^2 \longrightarrow \leq 2 \cdot 10^{11} \text{ n}_{eq}/\text{cm}^2$ (NIEL ~ 1/30)
♦ neutron dose integrated over 3 years much smaller : $\leq 3 \cdot 10^{10} \text{ n}_{eq}/\text{cm}^2$ (safety factor of 10)

 ${igsim}$ \lesssim 25 μs in L0:

columns of 256 pixels (20 μm pitch) \perp beam axes read out in // at \sim 10 MHz \rightarrow 5 mm depth

 \sim 50 μs in L1:

columns of 512 pixels (25 μm pitch) \perp beam axes read out in // at \sim 10 MHz \rightarrow 13 mm depth

100 mm

2 mm wide side band hosting ADC, sparsification, ... \hookrightarrow effect on material budget SMALL :
b increases by \sim 5 – 10 %

Option with discriminator instead of ADC : \sim 1 mm wide side band \Rightarrow effect on ${
m b}$ < 5 %

Design inner most layer (L0) to minimise its sensitivity to (unexpected) high occupancy (\gtrsim 10 %)

Double sided layer \rightarrowtail ~ 1 mm long mini-vectors connecting impacts on both sides of layer

▷ Needs a detailed feasibility (engineering) study

Alternative Approach : SiD Vertex Detector Geometry

CMOS-VD

Impact parameter resolution :

 $\Rightarrow a < 5 \ \mu m \quad \checkmark$ $\Rightarrow b < 10 \ \mu m \quad \checkmark \Rightarrow \text{thinning } \checkmark \text{, ladder design } \checkmark \text{ (from STAR), stitching not yet investigated}$

Radiation tolerance at room temperature :

Fast, low power, integrated signal processing :

- \Rightarrow read-out speed \checkmark
- \Leftrightarrow integrated ADC \rightarrowtail under developement
- \Leftrightarrow integrated sparsification \rightarrowtail studies starting

 \Rightarrow power dissipation \checkmark (duty cycle < 1/20) \rightarrowtail pulsed powering not fully assessed for this duty cycle

Overall geometry :

- ***** matching with neighbour trackers
- Sensor geometry and features
 - Heat removal
 - Thermal distortions
 - Handling thin silicon
 - Assembly and alignment procedures
 - Connections, cabling, and optical fibers
 - Paths for cables, optical fibers, and air flow
 - Lorentz forces

 \Rightarrow Only few people taking care of so many crucial and delicate topics

Observed Radiation Tolerance

of MIMOSA Sensors

MIMOSA-15 irradiated with neutrons of O(1 MeV) at JINR (Dubna) \mapsto doses of 0.47 / 2.1 / 5.8 \cdot 10 12 n $_{eq}/cm^2$

Performance assessment of sensors (20 μm pitch) installed on \sim 5 GeV e $^-$ beam at DESY (July 2006)

 \Rightarrow running conditions: T = - 20 $^{\circ}$ C, t $_{r.o.}$ \sim 700 μs (2.5 MHz)

 $\hookrightarrow \textbf{Very Preliminary results ...}$

Mimosa 15: Efficiency (%) vs. Irradiation dose

Pixel design needs to be modified to withstand high radiation doses (esp. at T_{room}):

- removal of thick oxide nearby the N-well (against charge accumulation)
- implantation of P+ guard-ring in polysilicon around N-well (against leakage current)

Characterisation of MIMOSA-11 in laboratory : Noise (e⁻ENC) vs Integration time (ms)

for Ordinary and Radiation Tolerant pixels, measured at T = - 25° C, + 10 $^{\circ}$ C and + 40 $^{\circ}$ C

Characterisation of MIMOSA-15 with \sim 5 GeV e⁻ at DESY after 1 MRad (10 keV X-Ray) exposure : • Radiation Tol. pixels, measured at T = - 20°C with t_{r.o.} \sim 180 μ s (10 MHz) \Rightarrow Very preliminary results :

% 1 MRad tolerance demonstrated at T $<0^{\circ}C$ (read-out time \ll 1 ms, no CDS)

Integ. Dose	Noise	S/N (MPV)	Det. Efficiency
0	9.0±1.1	27.8±0.5	100 %
1 MRad	10.7±0.9	19.5±0.2	99.96±0.04 %

* need to cross-check detection performance at T_{room} with pixels including CDS

Reduce mean free path of signal e^- :

- ***** Reduce pixel pitch (optimise w.r.t. r.o. speed) \mapsto MIMOSA-18 (10 μm pitch) \mapsto rad.tol tests in '07 ?
- ***** Pixel architecture with improved charge collection (sensing diode, epitaxy):
 - MIMOSA-15 under study \mapsto intrinsic noise higher than expected
 - MIMOSA-21 fab. in BiCMOS techno. (enhanced depletion of epitaxy) >>> tests started
- *** Optimise operation temperature**
- * Investigate annealing possibilities

Improve S/N performance :

- **※** Optimise pixel and r.o. architecture → MIMOSA-16 sub-array
- st Investigate thick epitaxy techno. \mapsto AMS 0.35 OPTO "20 μm " epitaxy option : tests under way
- * Optimise cluster rec. algo. (lower cuts \mapsto more fake hits \mapsto how much can STS tracking afford ?)

Equip each detector plane with 2 layers of sensors :

- \hookrightarrow 0 90 % detection efficiency per layer allows 99 % detection efficiency per plane
 - \circ double layer \mapsto track mini-segments from loosely selected clusters \mapsto improved det. eff.
- st Thinning sensors to ultimate thickness (\sim 30 μm) is particularly valuable
- ***** Design mechanical support allowing double sensor layer per detector plane

Radiation Tolerance vs Detection Efficiency vs Fake Hits

Effect of radiation damage : S/N decreases \Rightarrow det. eff. decreases as well

 \hookrightarrow recuperate part of det. eff. loss by relaxing the requirements on pixel charge in cluster algo.

 \Rightarrow rate of fake clusters will increase

CMOS-VD

Importance of fake cluster rate in irradiated MVD for track reconstruction :

- an accurate track extrapolation from STS to MVD allows to cope with relatively high fake rate
 - \Rightarrow accuracy of STS has significant consequences on tolerance of MVD to non-ionising radiation
 - \hookrightarrow Account for it in the design