

Design and Simulations

- Technology
- DEPFET Production
- Single Pixel Results
- Radiation Tolerance
- Ladder Concept & Thinning
- New Production

Compact layout: sharing of source, gate, and clear, less metal lines, more equally distributed in x and y

=> smaller pixel size possible

Simultaneous readout of two lines:

=> doubles readout speed (needs more readout channels, however)

Device Simulation

Charge -> current conversion factor (g_q) as function of gate length

$$g_q = \frac{-\mu}{L^2} (V_{GS} - V_{th})$$

Confirmed by measurements

For $L_{eff} = 4 \ \mu m$ (actual devices) $g_q = 500 \ pA/e$ With reduced gate length: $g_q > 1nA/e \ possible$ Larger g_q improves S/N Less sensitive to external noise sources

Device Simulation

Potential in a DEPFET array in accumulation mode

Rate Alxol Delegat

Beeth 12um

Double metal necessary for matrix operation Self-aligned implantations with respect to polysilicon electrodes => Reproducible potential distributions over large matrix areas Low leakage current level: < 200pA/cm² (fully depleted – 450µm)

• PXD4 Production: 1st Iteration of DEPFET Matrices

Production in the MPI semiconductor laboratory

Various test structures & single pixels

Test-Matrices (amongst others):

ArrayareaPixel SizeClear64 x 128 $7x7 mm^2$ $33x24 \mu m^2$ common gate64 x 128 $7x7 mm^2$ $36x22 \mu m^2$ common gate64 x 128 $7x7 mm^2$ $36x29 \mu m^2$ pulsed gate

Clear mechanisms:

Clear gate: potential barrier between gate and clear contact:

Pulsed: can be lowered during clear: lower clear voltages

Common: fixed potential, simpler layout (smaller pixels)

HE implant: internal gate deeper in bulk:

- -> lower clear voltages (better clear performance)
- -> lower amplification

Single Pixel Tests

Tests of basic DEPFET parameters

- clear efficiency
- •intrinsic noise
- •radiation hardness

Single "double" pixel S: source (common) D1, D2: drain G1, G2: gate C1, C2: clear contacts

Single Pixel Test: g_q (charge -> current conversion)

$$g_q = \frac{-\mu}{L^2} (V_{GS} - V_{th})$$
$$= f(I_d) \frac{1}{L^2}$$

. .

Expected dependence of g_q on gate length confirmed

Future: reduce gate length to increase gain to ~ 1 nA/e

(L: design parameter, L_{eff} smaller due to underetching)

Single Pixel Tests: Clear Efficiency

Complete clear:

-> necessary for low noise operation

Incomplete clear -> some charge remains Fluctuations of left over charge -> reset noise Noise as function of clear parameters -> Complete clear in large parameter space

Fast clear:

-> necessary for high speed operation

Complete clear achievable in < 10 ns

Present clear voltages rather high (>10V) Design goal: lower clear voltages (U > 10V not compatible with rad. hard CMOS)

Lab Tests: Noise versus bandwidth

High speed readout => high bandwidth => short shaping times Thermal noise of the DEPFET transistor ~ $1/SQRT(\tau)$

Measurements of a single pixel with an external high bandwidth amplifier.

Lab Tests: Noise versus bandwidth

For 20 MHz line readout rate: 50 MHz bandwidth for single measurement **

(sample-clear-sample)

@ 50 MHz: rms ~ 30 e-

Aim for S/N ~ 40/1 (~ 100 e-): sufficient headroom for external noise sources!

Intrinsic DEPFET noise sufficiently low for high speed operation at ILC

OEFFEN

Radiation Hardness

lonising radiation (γ , e from beamstrahlung).

Creation of fixed positive charge in gate oxide.

Shift of flatband voltage (more negative to compensate oxide charge).

Shift of transistor threshold voltage

Irradiation with Co⁶⁰ γ : ~ 1 MRad

Transistor off: $\Delta U \sim 4V$

Transistor on: $\Delta U \sim 6V$

DEPFET operation: transistor off most of the time (1000/1).

Threshold voltage can be compensated adjusting switcher voltages.

OFFE.

Radiation Hardness

Oxide damage: introduce traps at interface, reduce mobility

- -> increase of 1/f noise
- -> change of transistor gain: g_m, g_q

Noise ENC=1.6 e⁻ (rms) at T>23 degC

Noise ENC=3.5 e⁻ (rms) at T>23 degC

Negligible noise increase observed (1/f noise does not scale with $1/Sqrt(\tau)$)

Radiation Hardness: protons, neutrons

steering chips

R/O chips

Hans-Günther Moser, MPI für Physik

R/O chips

Thinning Technology at MPI Semiconductor Laboratory

- 1) Process backside of thick detector wafer (structured) implant.
- 2) Bond detector wafer on handle wafer (SOI).

- 3) Thin detector wafer to desired thickness (grinding & etching).
- 4) Process front side of the detector wafer in a standard (single sided) process line.
- 5) Etch handle wafer. If necessary: add Al-contacts Leave frame for stiffening and handling, if wanted

handle wafer

Thinned area: 10cm x 1.2 cm (ILC vertex detector dummy)

ILC VXD Review, Fermilab, October 23, 2007

Hans-Günther Moser, MPI für Physik

Bill Cooper, Fermilab

Longitudinal Sagitta at Edges (no gravity)

Average Deflection under Gravity

ILC VXD Review, Fermilab, October 23, 2007

Hans-Günther Moser, MPI für Physik

Actual Projects: Large ILC type structures

•Large (10cm x 1.2cm) ILC module like structures, 50 μm thick

- Instrumented with MOS diodes and strip-like patterns
- Smaller test diodes and MOS structures
- •Backside implant like needed for DEPFETs (structured p-implant)
- •Processing of real thinned DEPFETs scheduled for 2008/2009

Material Budget

Material budget (within acceptance)

Total:		0.12 % X ₀
Gold bum	ps:	0.03 % X ₀
Switcher:	50 µm Si	0.01 % X ₀
Frame:	450 µm Si	0.05 % X ₀
Sensor:	50 µm Si:	0.05% X ₀

- All silicon module:
- -Low material budget
- -Mechanical rigidity
- -Easy handling
- -Minimal CTE effects
- -Single module scale sensor

Frame perforated to reduce material keeping mechanical strength

New Pixel Production

New Pixel Production: PXD5

-Larger matrices: 512 x 512 (1.6 x 1.2 cm²) 128 x 2048 (0.3 x 4.9 cm²)

-optimization clear ⇔ gain lower clear voltages

-variants:

small pixels (20x20 μ m²) shorter gate -> higher g_q

-Test structures for bump bonding

-Ready since June 2007

-First matrices in a lab and beam test

DEPFET pixel detectors for ILC have been designed, simulated and fabricated at the MPI semiconductor laboratory

Measurements of single pixels demonstrate:

charge-current conversion as expected from simulations fast and complete clear low noise even at high bandwidth sufficiently radiation tolerant for use at ILC

All silicon module/ladder concept: based on thinned sensors

thinning technology demonstrated thinned samples/diodes have good mechanical and electrical properties 0.1% radiation length per layer in reach

2nd generation pixel matrices produced

larger (ILC scale) array smaller pixel size improved properties (gain, clear behaviour) evaluation in progress

Hans-Gunther Moser

for the DEPFET Collaboration (<u>www.depfet.org</u>)

R G B 120, 101, 213 R G B 194, 186, 236

ILC VXD Review, Fermilab, October 23, 2007