

DEPFET Active Pixel Sensors for the ILC

Test of the Prototype System

Carlos Lacasta

for the DEPFET Collaboration (<u>www.depfet.org</u>)

ILC VXD Review, Fermilab, October 2007

- \checkmark Description of the system
- $\boldsymbol{\checkmark}$ Characterization of the system
- ✓ Laser tests
- ✓ Beam test results
 - ➔ DEPFET telescope

- ✓ Hybrid
 - → 64x128 PXD4 matrix
 - → CURO chip
 - ➔ 2 SWITCHER chips
 - → Transimpedance amplifiers

✓ S3A Board:

- → ADCs
- ➔ FPGA generating DAQ sequences
- → USB 2.0 link for data transmission

Switcher chip provides gate voltages

DEPFET Matrix 64x128 pixels 36 x 28.5µm²

CURO chip

Switcher chip provides clear voltages

ILC VXD Review, Fermilab, October 2007

PCB 'hybrid' with DEPFET matrix, 2 x SWITCHER, 1 x CURO

Characterization of the system – CURO

- ✓ Study CURO performance as a function of readout frequency and input capacitance
 - → Use internal calibration circuitry
 - → Scan threshold to obtain the 50% point at each calibration pulse.
- ✓ Array of capacitors at input

→ 1pF to 33 pF

- ✓ For small capacitance, noise is independent of r/o freq.
- ✓ CURO in trouble for high input capacitance and high row r/o freq.
- ✓ For 50µm thick sensors
 - → For 0pF load → S/N ~ 16
 - → At 40pF load ---> S/N ~ 3
- ✓ After CURO *exercise* many problems understood. Next generation should be better.

OEPFE.

ILC VXD Review, Fermilab, October 2007

5

✓ Measured several X-ray peaks from a number of radioactive sources

Characterization of the system – PXD4 matrices

- ✓ Linear response from 2000 to 20000 electrons
- \checkmark From the slope of the graphs:
 - → $g_a = 280 \text{ pA/e}^{-1}$
- \checkmark g_a value slightly smaller than in single pixel and small arrays tests.
 - ➔ Known and understood problem...
- \checkmark Noise is consistent with the one in previous slide: between 320 e⁻ ENC (this g_{a}) and 240 e^{-} ENC (single pixel **g**_q)
 - → CURO is the main contributor to system noise

- ✓ Laser setup in several institutes
- ✓ Different wave lengths:
 - → 682nm, 810nm, 1055nm
- ✓ Laser triggered by
 - → Signal generated by DEPFET DAQ sequence
 - → External pulse generator. DEPFET DAQ sequence started by internal trigger
- ✓ Laser focused on matrix backplane
- ✓ Laser spot: 2.5 5 µm
- Laser mounted on a XY-stage with 1µm steps
- ✓ 5x5 clusters
- ✓ Pixel-to-pixel variations on Mean signal height are of ~5%

DEPFE.

Laser tests

- ✓ Scan with the laser a DEPFET double pixel structure.
- ✓ Figure below shows the seed to cluster signal ratio

 Maximum seed fraction happens in the middle of the pixel and decreases in the region between pixels.

Laser tests

- Total cluster signal shows charge losses which correspond to the n⁺ clear implants
- Also observed in detailed 3D device simulations.

 This explains why we observe a g_q value which is smaller than the one measured with single pixels

ILC VXD Review, Fermilab, October 2007

- \checkmark Measurements show that charge losses are bigger in matrices without the HE implant
- \checkmark This has also been confirmed by the 3D device simulations.
 - → We believe that the new matrix design with a better clear region will solve these problems.

- ✓ Helped considerably to understand charge collection in the double pixel structure
- ✓ Charge losses in the clear region explain the discrepancy in g_q measurements between single pixels and matrices
- ✓ This effect has been understood and reproduced with 3D device simulations
- ✓ New PXD5 matrices have a much more improved clear region in order to overcome this problem.

- ✓ Beam tests made in the period 2004-2006
 - → At DESY synchrotron (6 GeV/c electrons)
 - → At CERN (SPS) with \sim 180 GeV/c pions
- \checkmark Sensors are
 - → 450 µm thick
 - ➔ Pixel size: 36x22 µm
- ✓ Analogue readout: read all pixels in rolling shutter mode
- ✓ Speed
 - → 0.5 kHz continuous frame rate
 - ▶ Dominated by USB transf.

Stage	Time	
Clear pulse duration	60 ns	
Sampling 1 row (sample-clear-sampling 1 row)	320 ns	This would give 3MHz row rate
One double row	14.8 µs	Non zero sup. r/o
One Frame	947.2 µs	

In the recent CERN testbeam
a DEPFET telescope of 5 DEPFET planes has been operated

Beam test - DESY

- ✓ Bonn ATLAS Telescope system
 - → 4planes of double sided silicon strip sensors with 50 µm pitch
 - ➔ Resolution ~5 µm
 - → 4.5 kHz r/o rate
- Trigger provided by coincidence of 2 scintillators
- DEPFET mounted on XYφ stage

ILC VXD Review, Fermilab, October 2007

Cluster accepted if within ± 2 pixels around predicted position

- $\boldsymbol{\checkmark}$ Hit positions had a residual of
 - → 8 µm in X
 - → 7 µm in Y
- \checkmark Predicted position had a limited resolution due to multiple scattering and telescope performance (~5 $\mu m)$
 - → Geant4 studies yielded ~7 µm
 - \rightarrow Bigger than the intrinsic pixel resolution
- \checkmark After correcting for that
 - → 4.2 µm in X
 - → 1.5 µm in Y
- ✓ We wanted to avoid the multiple scattering and, also, have a telescope providing a position resolution smaller than the intrinsic pixel resolution....

Test beam – DEPFET telescope

- ✓ DEPFET telescope
 - ➔ 5 DEPFET modules 25 mm apart
- ✓ Tested at CERN SPS with ~180 GeV/c pions

2 strip planes

2 strip planes

ILC VXD Review, Fermilab, October 2007

- ✓ Our system has allowed us to test many aspects of the DEPFETs and their readout
 - → The CURO has been a good battle horse to exercise the system
 - Unable to perform at high capacitive loads
 - ***** Has helped in pointing to the main problems of a drain mode readout
 - → Laser and X-ray setup
 - ▶ Charge losses have been understood and
 - we are confident we have the tools to control this and tune/contrast the 3D device simulation
 - → The system has been operated with test beams at DESY and at CERN
 - S/N ~ 110 for 450 μm
 - ▶ The system noise is understood and prospects for an ILC module are good
 - ▶ Position resolution is also good given the size of the pixels
 - → We have built and operated a 5 DEPFET planes telescope

 \checkmark Zero suppression exercised in the test beam

- → Top: low threshold Noise is taken as cluster seed and many pixels are added as neighbors
- ➤ Middle: medium threshold Tails at both ends disappear
- ➔ Bottom: high threshold Neighbors are not included and the distribution is narrower

✓ Cluster definition

✓ S-curve

S3A Board

HYBRID

System Noise

ILC VXD Review, Fermilab, October 2007

Carlos Lacasta, IFIC-Valencia

DEPFEY

System noise

DEPFEY