Simulation and Reconstruction Software at FNAL

Rob Kutschke, FNAL ILC Vertex Detector Review October 25, 2007

Outline and Preliminary Comments

- People
- Background information
- Work plan on one page
- Work plan details
- Schedule drivers
- Computing Resources at Fermilab
- Summary
- All work reported here is SiD specific.
- Su Dong showed work already done.
 - I will discuss next steps.
- My focus is projects that involve the vertex detector and are worked on by FNAL staff.

People

- Working on the main issues:
 - Hans Wenzel (100%), Rob Kutschke(~75%).
- Software distribution and www support:
 - Lynn Garren (small fraction).
- We are using work (still in progress) by:
 - Dima Onoprienko (Kansas State).
 - Tim Nelson and Jeremy McCormick (SLAC).
 - Both are working on making "hits".

Overview: "SiD/ALCPG" Framework

Endcap vs Forward

Goal: treat the Vertex Detector, the main Tracker and the Forward Tracker as an integrated system.

SiD Detector Models

sid00

- Complete but simplified sensitive volumes.
 - Barrel vertex detector and tracker are pure cylinders.
 - Endcaps are annulus of disk.
- Lots of exisiting MC needed by PFA people.

sid01

- As above but more detail of dead material.
- Added forward tracker.
- Current official model: lots of existing MC.

Wafer based model:

- Under development:
- Will need several variations, especially in forward region, including variations of dead material.

Work Plan Overview

- I) Study occupancies in endcaps/forward region and define candidate tiling(s).
- 2) Interface TRF Kalman filter to org.lcsim for use as a standalone final fitter.
- 3) Learn how to use existing vertexing code, including but not limited to LCFI.
- 4) Pattern recognition code for forward region and integrate it with codes for barrel.
- 5) Join simulated analysis effort.
- 6) Infrastructure for the above.
- 7) Miscellany.

1) Occupancy Studies (Hans)

- Define candidate (virtual) tilings of forward region
 - Evaluate occupancy.
 - Start with sid01.
- Define options for wafer based versions.
 - In collaboration with rest of SiD.
- Currently two hit generation codes exist:
 - Tim Nelson and Jeremy McCormick:
 - Details of cluster shapes.
 - Dima Onoprienko:
 - Driven by fast startup for Calorimeter assisted tracking.
 - See talk in <u>Thursday Simulation Session</u>
 - Meet Thursday to understand how to move forward.
- Results in a few weeks.

2) Kalman Filter (Rob)

- Interface TRF to org.lcsim geometry and hit classes for use as a final fitter.
 - Support sid00, sid01 and wafer based version.
 - Initially use cheating pattern recognition.
- Produce track information valid at:
 - PCA to beamline; Innermost hit; Outermost hit.
- Support use by: pattern recognition, vertex finding/ fitting, track/shower matching codes.
- Status:
 - Internal self tests nearly complete (hardest part).
 - Complete the interface to the outside world.
 - Goal for a useable product: Christmas/2008.
 - See talk in <u>Thursday Simulation Session</u>.

3) Learn Vertexing Codes (Rob)

- Known options:
 - org.lcsim port of ZVTop?
 - LCFI
 - Either send our tracks to Marlin or learn to call C++ from java and use it in its native form.
 - I hear rumors that LCFI has hard ties to ILD geometry.
 - Need to work around this.
- Use this experience as feedback to evolve the output of the track fitter.
- Details will be driven by needs of benchmark analyses.
- Start once Kalman filter released.

4) Pattern Recognition Codes (Hans)

- Initial goal is to develop code that works in the endcap/forward region.
 - Evaluate track finding efficiency and give feedback about number and placement of layers.
- Either extend this to run in the barrel or integrate this with existing codes that run in the barrel.
 - Ultimately we want to view pattern recognition as an integrated task that considers all of Tracker+Vertex
 Detector + Forward Tracker.
- Include realistic backgrounds.
- Start once occupancy studies are complete.
 - Expect this to be ongoing for a long time.

5) Simulated Analyses (Rob)

- Choose simulated analyses that stress the full tracking/vertexing system.
 - b and charm tagging stress vertexing:
 - First suggestion is B(H-> b bar) and B(H-> c cbar)
 - May be oversubscribed.
 - If so we will discuss other options with benchmarking group.
- Will also pick analyses that stress forward resolution and forward pattern recognition.
 - Have not thought about this yet.
- Start concurrent with work on vertexing codes.

6) Infrastructure (Both)

- Some classes are not rich enough for our needs:
 - Hits
 - Several efforts underway: Onoprienko, Nelson.
 - Tracks
 - Started discussion in ILC Forum. Little response.
- Bookkeeping of used hits.
 - Needed to layer pattern recognition algorithms.
 - Several private codes already exist in org.lcism.
- Persistence:
 - Administrative barriers in changing persisted classes.
 - Will ignore persistency until we have working code that uses our new classes.

7) Miscellany

- Projects that we think are needed but will only do
 if they are in the direct path of our work:
 - Run-time configuration system for use with org.lcsim.
 - Improve release management.
 - Becomes important if we start supporting users as distinct from developers.

Schedule Drivers

- LOI: due Oct 1, 2008.
- June I 2008:
 - Final simulation and reconstruction software ready.
 - Simulated analyses of benchmark physics processes developed and ready to run on final software.
- February 2008
 - FNAL software in good enough shape that people doing analyses can use it.
 - Some algorithms not final but interfaces will be.
 - Real pattern recognition will still be immature.
 - Can get started using cheating pattern recognition.

Computing Resources at FNAL

- Machines for small jobs and Grid access:
 - ilcsim(4x1cores); ilcsim2 (2x2 cores).
- Grid Resources
 - Fermigrid: O(1000) cores 2 to 3 GHz.
 - Authorized: 150 cores (300 when need demonstrated).
 - Spare cycles on other grid installations.
- Networked Attached Storage (BlueArc)
 - 15 TB shared accelerator modeling (small users).
 - Separate partition for code/constants
 - Mounted on user machines, ilcsim*, Fermigrid nodes.
- To get accounts on ilcsim* or to join VO
 - Contact Lynn Garren (garren@fnal.gov).

Reducing Barriers to Entry

- It can take a long time to learn simple things.
 - Software is not ready for users (vs developers).
 - Documentation is incomplete and scattered:
 - Answers that do exist are generally very good.
 - But you need to ask exactly the right question.
- Make the software ready for users.
 - Responsibility of all of us working on it.
- Create comprehensive tutorial/example suite.
- At FNAL software is all installed on ilcsim*.
 - Goal: to have first histograms in 5 minutes.
- If we could convert aida files to root, it would help recruiting at FNAL for simulated analyses.

Summary and Conclusions

- Fermilab has two experienced people working on tracking in general and forward tracking specificially.
- Projects to be completed soon:
 - Occupancy studies and definition of candidate tilings.
 - Kalman filter on cheated pattern recognition.
- Projects to start after these:
 - Forward pattern recognition
 - Learning vertexing codes
 - Simulated analyses.
- There remain some infrastructure issues.
- There remain barriers to entry that must be a reduced soon.

Backup Slides

ALCPG Software Suite: Figure Page 4.

- SLIC:
 - G4 based simulation system.
- org.lcsim
 - Java based framework for reconstruction and analysis.
- Wired 4 based event display.
- GeomConverter:
 - Reads "Compact Detector Description" XML.
 - Native format for org.lcsim.
 - Can write:
 - HepRep XML for Wired-4
 - LCDD XML for SLIC
- Data formats: StdHep and LCIO.

My View of "Hits"

Evolving Tracks

- Wiki page at SLAC:
 - http://confluence.slac.stanford.edu/display/ilc/Evolving +the+LCIO+Track+Class
- Direct link to my list of desired features:
 - http://confluence.slac.stanford.edu/display/ilc/From +Rob+Kutschke
- Announcement in the Forum:
 - Analysis and Reconstruction
 - Tracking and Vertexing
 - http://forum.linearcollider.org/index.php?
 t=tree&goto=1092&rid=0&S=d7fbd8520f51b76a7397
 48d70e9a781f#msg_1092