Modelindependent WIMP Searches at the ILC

Christoph Bartels, Jenny List

DESY

ILC Physics and Detector Meeting October 02, 2007

Introduction Software And Reconstruction Tools Improvements since LCWS'07 Updated Analysis Results Summary And Outlook

Modelindependent WIMP Searches at the ILC

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Model-independent WIMP searches

study:

- sensitivity
- mass resolution
- benefits of beam polarisation

... with full detector simulation! using:

- ► WIMP pair production with ISR: $e^+e^- \rightarrow \chi \bar{\chi} \gamma$
- main background process: $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

What does model-independent mean?:

- ▶ No assumptions on the nature of the WIMP interactions
- Dark Matter consists of only one kind of particle
- ▶ WIMP pairs annihilate directly into SM particles $\chi \overline{\chi} \to X_i \overline{X_i}$ $X_i = e, q, \nu, g, ...$ (no $\tilde{\tau} \tilde{\chi}_1^0$ coannihilation)
- Annihilation cross section σ_{an} determined by Ω_{DM}

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Cross-section Derivation

• Annihilation cross section σ_{an} determined by Ω_{DM}

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Cross section derivation

- Annihilation cross section σ_{an} determined by Ω_{DM}
- Crossing symmetry: $\sigma_{an} \rightarrow \sigma(e^+e^- \rightarrow \chi \overline{\chi})$

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Cross section derivation

- Annihilation cross section σ_{an} determined by Ω_{DM}
- Crossing symmetry: $\sigma_{an} \rightarrow \sigma(e^+e^- \rightarrow \chi \overline{\chi})$
- ▶ Inclusion of ISR: $\sigma(e^+e^- \rightarrow \chi \overline{\chi} \gamma)$

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Cross section parameters

- Free:
 - κ_e Fraction of WIMP pair annihilation into e^+e^-
 - M_{χ} WIMP mass
 - S_{χ} WIMP spin
 - ► J Angular momentum of dominant partial wave
- From cosmological observation: σ_{an}

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Influence of Beam Polarisation

- ▶ Main irreducible background: $e^-e^+ \rightarrow \nu \bar{\nu} \gamma$ is strongly suppressed for $e_L^+ e_R^-$
- ▶ WIMP couplings to electrons may have different behaviour!

Considered cases for WIMP couplings to electrons

- ▶ like SM charged weak interaction $\kappa(e_L^- e_R^+)$
- ▶ parity and helicity conserving $\kappa(e_L^-e_R^+) = \kappa(e_R^-e_L^+)$
- opposite SM charged weak interaction $\kappa(e_R^-e_L^+)$

Expect enhancement of S/B ratio by polarisation!

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Event Generation

Background:

▶ NUNUGPV: $e^+e^- \rightarrow \nu \overline{\nu} \gamma(\gamma \gamma)$ (used at LEP2)

- $1.2 \cdot 10^6$ events generated at $\sqrt{s} = 500 GeV$
- ▶ At least one photon with 8 GeV $< E_{\gamma} < 250$ GeV and $15^o < \Theta_{\gamma} < 165^o$ in each event

Signal:

- Reweighting background according to WIMP cross section
- Benefit: only one MC production needed

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Detector Simulation and Reconstruction

Full GEANT 4 based detector simulation

- Large Detector Concept
 - LDC01Sc
 - 4 Tesla magnetic field
- Mokka 6.1

Reconstruction with MarlinReco

- Particle Flow as implemented in WOLF algorithm
- require:
 - ► E_γ > 10 GeV
 - $20^\circ < \theta_\gamma < 160^\circ$
 - for resolution studies: angular match to generated photon

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Photon Energy Spectrum

Generator level:

Full reconstruction old vs new:

Difference: bug fix plus ,, regional" calibration (endcap/barrel)

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Improved Energy Resolution

- ▶ with new calibration significantly better resolution ⇒ better sensitivity
- remaining difference to design goal vanishes when looking at particle gun events in Mokka 6.4
- ▶ leads to less migration from kinematic region of relativistic WIMP production into signal region ⇒ "less"sensitivity

Inputs for Sensitivity Determination

WIMP:

- ▶ P-wave annihilator (J=1)
- $M_{\chi} = 150 \text{ GeV}$
- $S_{\chi} = 1$
- ▶ κ_e = 0.3

technical problem with weights fixed \Rightarrow less fluctuations in signal

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Sensitivity

Reach for 3σ observation with $\int Ldt = 500 fb^{-1}$

- Method: fractional event counting implemented in ROOT::TLimit
- WIMP spin
 - **TODAY:** P-wave (J=1), $S_{\chi} = 1$ WIMP
 - not yet: P-wave (J=1), $S_{\chi} = \frac{1}{2}$ WIMP
- WIMP couplings
 - not yet: coupling to e_L^- and e_R^+
 - not yet: coupling to e_R^- and e_L^+
 - TODAY: parity and helicity conserving couplings
- Polarisation
 - unpolarised beams
 - e^- polarisation only ($P_{e^-} = 0.8$)
 - additional e^+ polarisation ($P_{e^+} = 0.6$)

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Case 1: P-wave (J=1), $S_{\chi} = 1$ WIMP

Polarisation:

- full line: unpolarised beams
- dotted line: e^- only ($P_{e^-} = 0.8$)
- dashed line: additional e^+ $(P_{e^+} = 0.6)$

What's happening at M = 140 GeV?

coupling: P & H conserving

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Summary

- Energy resolution significantly improved, expect
 - improved sensitivity through sharper edges
 - worse sensitivity due to reduced migration from relativistic region
- technical problem with weights solved
- new problem at M = 140 GeV ?!

Introduction	Tools	Improvements	Updated Analysis Results	Summary And Outlook

Outlook

- Use better photon reconstruction (Pandora, photon finder by P. Krstonosic)
- Include reducible (experimental) backgrounds
- Include beamstrahlung / machine backgrounds
- Move to LDC01Sc_05
- Have a look at SUSY scenarios in which radiative Neutralino production is the only open SUSY channel at the ILC (Started already in cooperation with O. Kittel (Bonn) et al.)