K.O. Eyser C. Helebrant, D. Käfer, J. List, M. Beckman, U. Velte

Simulation Studies for the Upstream Polarimeter

- Basic Considerations
- Simulation Layout
- Simulation Results
- Test Stand Updates

Compton Scattering

The Polarimeter Magnet Chicane

Dipoles: 0.097 T 3 x 2.4 m 0.3 m spacing

Compton spectrum < 18 cm emittance loss < 1% (beam displacement 2 cm)

Laser Wire Study

by Lawrence Deacon, RHUL

Background caused on polarimeter detector- spectrum

- The polarimeter detector is assumed to be 10cm by 10cm
- The background is
 3.51TeV per shot, about 30% of the
 12TeV polarimeter signal

30% of signal !!! asymmetry significantly reduced

BDSIM

http://cvs.pp.rhul.ac.uk/cvsweb.cgi/BDSIM/

GEANT4 Beam Delivery Simulator complementary to fast simulation

Polarimeter Signal

Laser Wire Background

summer student work by Moritz Beckmann

Laser Wire Converter

10 mm lead before second set of dipolesCompton photons to conversion electrons10 cm Cerenkov detector

50k events correspond to 50 bunches

Converter Background

low energy electrons deflected by dipoles almost exclusively photons total energy 570 GeV

Collimator

Entries

80

Energy (GeV)

Laser Wire only, NO converter 3m Carbon Steel collimator circular

cleans up incident electron beam small effect on polarimeter

some high energetic secondary electrons

deposited energy per bunch 3.6 GeV

5 mm radius

40

E.tot. 3.6 GeV

50

60

70

Aperture radius 5 mm

£0.24

50.22

à 0.2

20.18

ਦ 20.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

10

20

30

Collimator

Secondary particles from converter 50 cm Tungsten collimator (slit)

background reduced to few GeV

Wake fields not considered !!! Scraper might be ok.

Test Stand Update

Homogenizer for LEDs fibers for light output w pedestal for scan of dynamic range

Smeared Self-Test

Test Stand Update 2

SLD polarimeter Cerenkov detector on-going commissioning

test measurements:

- photo detectors
- light transmission
- Cerenkov light production

Test Stand Update

- Design of ILC polarimeter Cerenkov tubes
 - geometry and mechanical structure
 - material and surfaces for light transmission
 - light read-out
 - gas enclosing
 - LED / Laser calibration integration
 - Optical simulation needed for comparison

Summary

- <u>Upsetting background in first Laser Wire studies</u>
- BDSIM toolkit (complementary to fast simulation)
- Proper Cerenkov detector positioning
 - small background contribution
- Converter background
 - mainly photons below Compton edge
 - significantly reduced by collimator
- <u>Collimator or scraper</u>
 - wake fields not considered
- Full simulation
 - complete detector
 - polarized Compton process
- <u>Test stand measurements</u>
 - photo detectors
 - SLD Cerenkov detector
- Design of Cerenkov test tubes started