The status of E166

Ralph Dollan

- E166 scheme
- The helical undulator
- Compton transmission polarimetry
- Setup
- Analysis, Simulation, Results

The International Linear Collider (ILC)

- Center of mass energy: 500 GeV
- Luminosity: L= $2 \cdot 10^{34}$ cm⁻²s⁻¹
- Length:
- ~ 31 km
- Polarized beams:
 P(e⁻) > 80%, P(e⁺) ~ 30%(60%⁺) ⁺upgrade
- Polarization of both beams is advantageous f. SM- and non-SM-physics (eff. luminosity, signal/background in SM processes ...)

http://www.ippp.dur.ac.uk/~gudrid/source/

Task: proof the possibility, to produce polarized positrons using a helical undulator !

- 1 m long helical undulator produces circular polarized photons
- conversion of circularly polarized photons to longitudinally polarized positrons in thin W-target
- measurement of polarization of photons and positrons by Photon transmission method
- main parts: undulator, production target, spectrometer, e+/γ diagnostics

The E166 Undulator

Design parameter:

- length 1m
- period 2.54 mm
- aperture 0.889 mm
- on axis field 0.71 T
- K 0.19
- E_{v} (1st harmonic) 7.8 MeV @ E_{beam} = 46.6 GeV

positron generation in a 0.5 X_0 W-target for undulator design parameters:

Compton Transmission Polarimetry Reconversion Target Magnetized Iron Absorber Detector $\sigma_{comp} = \sigma_0 + P_{\gamma} P_e \sigma_{pol}$ $\sigma_{tot} = \sigma_{phot} + \sigma_{comp} + \sigma_{pair}$ with $T^{\pm}(L) = e^{-nL\sigma} = e^{-nL(\sigma_{phot} + \sigma_{pair} + \sigma_0)} e^{\pm nLP_{\gamma}P_e\sigma_{pol}}$ Transmission $\delta(L) = \frac{T^+ - T^-}{T^+ + T^-} \approx nLP_e P_{\gamma} \sigma_{pol}$ Asymmetry $P_{\gamma} = \frac{\partial}{nL\sigma_{pol}P_{e}} = \frac{\partial}{A_{\gamma}P_{e}} \qquad P_{e}(Fe) = 6.9 \pm 0.2 \%$ $A_{\gamma}P_{e} \qquad Analyzing Power$ **Photon Polarisation** (via Simulation)

The E166 Polarimeter

E-166 in the FFTB

Details of the setup

The setup

Positron data analysis

- 2 run periods (june and september 2005)
- 6 spectrometer settings (6 e⁺ energy points)
- > 8 million triggers
- ~ 3000 cycles

Analysis steps:

- background subtraction
- normalization of the energy deposition
- cyclepairing
- asymmetry determination

Positron data analysis

- 2 run periods (june and september 2005)
- 6 spectrometer settings (6 e⁺ energy points)
- > 8 million triggers
- ~ 3000 cycles

Analysis steps:

- background subtraction
- normalization of the energy deposition
- cyclepairing
- asymmetry determination

I_{spec} [A]	$E_{tot}(e^{\pm})$ [MeV]	$\mathbf{A}^{fit} \pm \Delta \mathbf{A}^{fit}$ [%]	χ^2/n_f
100	4.59	0.575 ± 0.164	166.4 / 203
120	5.36	0.895 ± 0.081	167.9 / 184
140(1)	6.07	1.089 ± 0.096	404.1 / 276
140(2)	6.07	1.024 ± 0.060	274.9 / 217
140(1+2)	6.07	1.037 ± 0.051	628.2 / 490
150	6.41	0.692 ± 0.113	33.9 / 49
160(e+)	6.72	0.889 ± 0.077	257.9 / 166
160(e-)	6.72	1.320 ± 0.046	167.2 / 144
180	7.35	0.778 ± 0.186	59.8 / 63
180(ff)	7.35	0.914 ± 0.129	174.2 / 101
180(both)	7.35	0.883 ± 0.106	225.8 / 164

Spectrometer calibration

Calculated and measured field map were the input for the G4 Simulation

Polarization

P1 counter (PosSi)

	Zeuthen									Tennessee			
	Possi segments									Sum of all			
	TL		TR		BL		BR			P1 segi	nents		
	A	ΔA	A	ΔA	A	ΔA	A	ΔA	A	ΔA	А	ΔA	
s100	0.735	0.022	-0.230	0.038	-0.946	0.017	-0.393	0.038	-0.115	0.017	-0.101	0.2	
s120	0.768	0.022	-0.103	0.040	-0.826	0.027	-0.342	0.047	-0.066	0.020	-0.088	0.2	
s140(1)	0.079	0.111	3.017	2.726	-0.459	0.144	-0.382	0.233	-0.107	0.110			
s140(2)	0.643	0.026	-0.174	0.054	-0.601	0.018	-0.351	0.050	-0.055	0.019	-0.029	0.2	
s140(1+2)	0.496	0.041	-0.056	0.488	-0.599	0.038	-0.357	0.080	-0.095	0.034			
s160(e+)	0.892	0.042	-0.174	0.090	-0.633	0.021	-0.438	0.088	-0.035	0.023	-0.096	0.2	
s160el	0.149	0.020	0.579	0.043	1.030	0.049	0.449	0.040	0.382	0.022	0.379	0.2	
s180	0.951	0.091	-0.558	0.303	-0.711	0.050	-0.480	0.352	-0.108	0.063			
s180(f)f	0.920	0.075	-0.307	0.163	-0.731	0.053	-0.532	0.223	-0.081	0.055			
s180(both)	0.937	0.058	-0.478	0.151	-0.734	0.039	-0.507	0.191	-0.094	0.042	-0.092	0.2	
150	-0.697 0.041												
	Asymmetries and errors in [%]												

P1 asymmetries

P(e-) 0.0694 0.0017

all values in [%]												
	Asym	dA	PossiAsym		corr.		anapower			Polarisation		tion
	asym	stat	PA	delta PA	Α	dA			Р	stat	Pcorr	stat
s100	0.575	0.164	-0.115	0.017	0.689	0.165	0.14980	0.00160	55.27	15.89	66.32	16.00
s120	0.895	0.081	-0.066	0.020	0.961	0.083	0.15630	0.00150	82.55	7.74	88.63	8.00
s140first	1.089	0.096	-0.107	0.110	1.197	0.145	0.16160	0.00140	97.13	8.89	106.72	13.26
s140second	1.024	0.060	-0.055	0.019	1.079	0.063	0.16160	0.00140	91.35	5.88	96.24	6.16
s140both	1.037	0.051	-0.095	0.034	1.132	0.061	0.16160	0.00140	92.43	5.15	100.90	6.06
s160pos	0.889	0.077	-0.035	0.023	0.923	0.080	0.16510	0.00130	77.56	7.01	80.58	7.30
s160el	1.320	0.046	0.382	0.022	0.938	0.051	0.15280	0.00140	124.43	5.41	88.41	5.39
s180	0.778	0.186	-0.108	0.063	0.886	0.196	0.16860	0.00130	66.47	15.95	75.69	16.85
s180ff	0.914	0.129	-0.081	0.055	0.995	0.140	0.16860	0.00130	78.08	11.21	85.03	12.19
s180both	0.883	0.106	-0.094	0.042	0.977	0.114	0.16860	0.00130	75.47	9.27	83.54	9.97
s150	0.692	0.113	-0.697	0.041	1.389	0.120	0.16335	0.00135	61.01	10.07	122.51	11.01

Corrected Polarization

Correction vs. normalization (P1)

Corrected Polarization

Corrected Polarization

- E-166 produced data with good quality and has shown, that the helical undulator works - <u>polarized positrons have</u> <u>been measured</u>
- Asymmetries -> polarization values are as expected
- The E166 simulation made polarized processes in GEANT4 necessary they have been implemented
- (Interpretation of the data and) publication in progress