ILC Positron Source Modeling

A. Ushakov, S. Riemann, A. Schälicke

ILC@DESY physics and detector meeting, 02 October 2007, Hamburg

- Positron source model
- Positron production
- Positron capture
- Radiation aspects
- Outlook

Layout of Positron Source

ILC nominal positron source parameters

e ⁻ drive beam energy, GeV	150	
\mathbf{e}^+ per bunch at the end of pre-accelerator	$3\cdot 10^{10}$	
Bunches per pulse	2625	
Pulse repetition rate, Hz	5	
e ⁺ polarization	30 (60)	

Source Model. Main Issues

Target

Thickness	0.4 X ₀		
Material	Ti6AI4V, W25Re,		

Flux Concentrator

Length, cm	20		
$B_0 (z = 0)$	6 T		
$B_0 (z = 20 \text{ cm})$	0.5 T		
Ø (z = 0)	1 ÷ 24 mm		
Ø (z = 20 cm)	46 mm		

SW Structure

Aperture	46 mm		
Number of cells	11		
Ave. gradient	14.5 MeV/m		

Issues:

- Positron collection optics downstream the target
- Heat dissipation in the target
 - High energy deposition by photon beam
 - Eddy currents (rotating target wheel in magnetic field)
- Radiation damage of the target
- Source activation

Positron source modeling (simulation) starting from undulator to the end of pre-accelerator.

- G4 simulation of polarized positron production and transport in magnetic and electric fields
- Optimization of optical matchings device
- Energy deposition and radiation target damage simulations for different target materials (collaboration with LLNL, University of Liverpool, Cockcroft Institute)
- Estimations of source parts activation (FLUKA)

Photon Production

Undulator Parameters

Undulator K-value	0.92
Undulator period, cm	1.15
Number of photons, γ/e^-m	1.95
Energy of 1 st harmonic cutoff, MeV	10.06
Mean photon energy, MeV	10.41

Photon Energy Distribution and Polarization

Positron Beam (after the target)

Positron Yield, e ⁺ / γ	$2.19 \cdot 10^{-2}$		
Polarization, %	27		

Energy deposited by photon: 845 keV Undulator length: 127.6 m (1.5 e^+/e^-) Average photon beam power: 116.8 kW

Power Deposited in Target

Flux Concentrator

Influence of Initial B-field on Energy Deposition

Hamburg, 02.10.2007 11 / 16

Average Positron Energy vs Electric Field Phase

(after first acceleration structure)

 $E(0,0,E_z)$

$$E_z(t, \varphi) \sim E_0(z) sin(\omega t + \varphi)$$

Electric field does not change:

- positron capture efficiency;
- power deposition in OMD.

Positron Losses. DR Acceptance

Beam after first RF structure without any cuts

	ASTRA	Geant4		
Capture Efficiency, %	70.7	70.1 ± 1.0		
Polarization, %	28.7*	$27.6 \pm 1.2^{**}$		

^{*} Spin precession is not implemented in ASTRA

** Spin precession in magnetic field has been taken into account

... with transverse emittance cut (0.04 π rad m) and longitudinal cut ($\pm7.5^\circ$ of E-field phase) calculated by ASTRA

Capture Efficiency, %	25.4
Polarization, %	40.3

A. Ushakov (DESY Zeuthen)

ILC@DESY physics and detector meeting

Hamburg, 02.10.2007 14 / 16

Activity and Equivalent Dose Rate at 1 m from the Source

Nuclei	A	T _{1/2} , h	A _{5000h} , GBq	E_{γ} , keV (Intensity, %)] [Nuclei	Α	<i>T</i> _{1/2} , h	<i>Ď</i> _{+1w} , mSv/h
Sc	47	80.4	1416.4	159.4 (68.3)) (Sc	46	2011.9	153.7
Ti	45	3.1	961.2	719.6 (0.15)		Sc	47	80.4	5.7
Sc	46	2011.9	544.5	1120.5 (99.99)		Sc	48	43.7	2.6
Sc	44	3.9	198.3	1157.0 (99.9)		V	48	389.7	2.1

- Positron yield, capture efficiency and polarization have been calculated for source with pulsed flux concentrator.
- Activity and dose rates have been estimated.

Future plans

- Work on optimization of positron capture will be continued.
- Simulations for source with a photon collimator will be performed.
- Calculations for alternative target materials will be performed.
- Implementation of spin precession in Geant4 will be finished.
- Neutron production and activation will be calculated in G4 and compared with FLUKA.