

Report from GDE

Barry Barish Caltech / GDE 25-Sept-07

25-Sept-07 P5 Fermilab

2005 2006 2007 2008 2009 2010

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1}$ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%

The machine must be upgradeable to 1 TeV

25-Sept-07 P5 Fermilab

25-Sept-07 P5 Fermilab

ĪĪĿ

RDR ILC Schematic

- 11km SC linacs operating at 31.5 MV/m for 500 GeV
- Centralized injector
 - Circular damping rings for electrons and positrons
 - Undulator-based positron source
- Single IR with 14 mrad crossing angle
- Dual tunnel configuration for safety and availability

RDR Design Parameters

Max. Center-of-mass energy	500	GeV
Peak Luminosity	~2x10 ³⁴	1/cm ² s
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~230	MW

The reference design was "frozen" as of 1-Dec-06 for the purpose of producing the RDR, including costs.

It is important to recognize this is a snapshot and the design will continue to evolve, due to results of the R&D, accelerator studies and value engineering

The value costs have already been reviewed twice

- 3 day "internal review" in Dec
- ILCSC MAC review in Jan

Σ Value = 6.62 B ILC Units

Summary **RDR "Value" Costs Total Value Cost (FY07)** 4.80 B ILC Units Shared **1.82 B Units Site Specific 14.1 K person-years**

("explicit" labor = 24.0 M person-hrs @ 1,700 hrs/yr)

1 ILC Unit = \$ 1 (2007)

25-Sept-07 P5 Fermilab

İİL

RDR Design & "Value" Costs

- Reviews (5 major international reviews + regional)
 - The Design: "The MAC applauds that considerable evolution of the design was achieved ... the performance driven baseline configuration was successfully converted into a cost conscious design."
 - The R&D Plan: "The committee endorses the approach of collecting R&D items as proposed by the collaborators, categorizing them, prioritizing them, and seeking contact with funding agencies to provide guidelines for funding.
 - International Cost Review (Orsay): Supports the costing methodology; considered the costing conservative in that they identify opportunities for cost savings; etc.

RDR Complete

Reference Design Report (4 volumes)

Executive Summary

Physics at the ILC

Accelerator

Detectors

25-Sept-07 P5 Fermilab

Global Design Effort

RDR Complete

Companion Document (printed & website in October)

Gateway Document for broad circulation, including translations

25-Sept-07 P5 Fermilab

ir

Prepare to Propose ILC Construction

- ILC Engineering Design
 - We have a solid design concept in the reference design, but it is immature and needs engineering designs, value engineering, supporting R&D and industrialization.
- GDE has been reorganized around a GDE Project Management Office to reach this goal
 - Marc Ross, Nick Walker and Akira Yamamoto
 - Central management being given the authority to set priorities and direct the work
 - Resources for the engineering design and associated R&D appears feasible (FALC will concur on work packages)
 - Investments will be made toward Industrialization and siting
 - Anticipate LHC results in about 2010. We plan to be ready whenever the physics motivation is in place!

25-Sept-07 P5 Fermilab

Supporting R&D & Regional Programs

- Global R&D
 - Organized around task forces to achieve milestones linked to EDR schedule
 - S0 task force globally coordinated program to demonstrate gradient for EDR by 2009
 - S2 task force RF unit test and string tests by construction
 - S3 task force Electron Cloud tests to establish mitigation and verify one damping ring is sufficient.
- Regional Preparations
 - Siting preparations prepare to bid to host
 - Developing regional expertise on SCRF
 - Regionally based infrastructure and facilities
 - Industrialization

Technically Driven Timeline

Reference Design and Plan

Producing Cavities

Cavity Shape

25-Sept-07 P5 Fermilab

Global Design Effort

Cavity Gradient - Results

2007 – add final 3 µm fresh acid EP Note: multi-cells are harder than singles

Module Test – Results

25-Sept-07 P5 Fermilab

Optimistic scenario with final batch + tightloop

- Costs 36 MILCU for the R&D
- Gives highest confidence about the gradient distribution
- This needs to be compared to:
 - A reduction of the average gradient for the ILC from design of 31.5 to 28 MV/m
 - ~ 600 MILCU

Cryomodules

TESLA cryomodule

4th generation prototype ILC cryomodule

25-Sept-07 P5 Fermilab **Global Design Effort**

- Build 1 RF unit (3 cryomodules + 1 Klystron)
 - What gradient spread can be handled by LLRF system?
- Test with and without beam loading.
 - For heating due to high frequency high order modes
 - Amplitude and phase stability.
 - Static and dynamic heat loads.
- Purpose is to test
 - Reliability; Dark current; Degradation or other weaknesses
- Second phase string test needed before construction to verify modules for the ILC.

- Risk with no string tests → Build ~1.5 BILCU of cryomodules, then discover a design flaw.
 - Schedule/Cost risk -- fixing them could take years and cost > 20% of the original cost.
 - Categorize as medium risk (25%) → Risk*Cost ~75
 MILCU, plus schedule loss (years).
 - Risk would be higher 50-100% if not for the Tesla Test Facility.
- The planned string tests (One RF Unit) ~ \$50 MILCU.

ilr

İİL

Subdivision	Length (m)	Number
Cavities $(9 \text{ cells} + \text{ ends})$	1.326	$14,\!560$
Cryomodule (9 cavities or 8 cavities $+$ quad)	12.652	1,680
RF unit (3 cryomodules)	37.956	560
Cryo-string of 4 RF units (3 RF units)	$154.3\ (116.4)$	71~(6)
Cryogenic unit with 10 to 16 strings	1,546 to 2,472	10
Electron (positron) linac	$10,917\ (10,770)$	1 (1)

- Developing capability to construct in all three regions
 - Facilities developed regionally
 - Industrialization; assembly; testing

Electron Cloud Mitigation

- Low Emittance Damping Ring
 - Ensure the e- cloud won't blow up the e+ beam emittance.
 - Baseline -- Two positron damping rings -- alternate bunches.
 - RDR Change to one damping ring; move to central injectors; share tunnel
 - Assumed mitigation of electron cloud successful

R&D Program

- Simulations (cheap and encouraged making change)
- Test vacuum pipe coatings, grooved chambers, and clearing electrodes effect on ecloud buildup
- Do above in ILC style wigglers with low emittance beam to minimize the extrapolation to the ILC.

Cost Benefit: S3 Electron Cloud R&D

R&D for Electron Cloud

- High risk (~50%) that we must build a second e+ damping ring at a cost of 200 MILCU. (Cost risk = 100 MILCU)
- KEK-B and/or CESR R&D test program will involve dedicated use of the whole ring. The scale of R&D cost ~ 20-30 MILCU.

Main Linac Double Tunnel

- Three RF/cable penetrations every rf unit
- Safety crossovers every 500 m
- 34 kV power distribution

25-Sept-07 P5 Fermilab **Global Design Effort**

72.5 km tunnels ~ 100-150 meters underground

13 major shafts > 9 meter diameter

443 K cu. m. underground excavation: caverns, alcoves, halls

92 surface "buildings", 52.7 K sq. meters = 567 K sq-ft total

25-Sept-07 P5 Fermilab

Technically Driven Timeline

Civil Construction Timeline

ic

On-surface Detector Assembly CMS approach

CMS assembly approach:

- Assembled on the surface in parallel with underground work
- Allows pre-commissioning before lowering
- Lowering using dedicated heavy lifting equipment
- Potential for big time saving
- Reduces size of required underground hall

25-Sept-07 P5 Fermilab

İİĻ

Technically Driven Timeline

ilr

25-Sept-07 P5 Fermilab

Technically Driven Timeline

Technically Driven Timeline

Global Design Effort

Detector Performance Goals

- ILC detector performance requirements and comparison to the LHC detectors:
 - Inner vertex layer
 Vertex pixel size
 ~ 3-6 times closer to IP
 ~ 30 times smaller
 - Vertex detector layer ~ 30 times thinner

Impact param resolution $\Delta d = 5 \, [\mu m] \oplus 10 \, [\mu m] / (p[GeV] \sin 3/2\theta)$

- \circ Material in the tracker \sim 30 times less \circ Track momentum resolution \sim 10 times betterMomentum resolution $\Delta p / p^2 = 5 \times 10^{-5}$ [GeV⁻¹] central region $\Delta p / p^2 = 3 \times 10^{-5}$ [GeV⁻¹] forward region
- Granularity of EM calorimeter ~ 200 times better Jet energy resolution ΔE_{jet} / E_{jet} = 0.3 / $\sqrt{E_{jet}}$ Forward Hermeticity down to θ = 5-10 [mrad]

Technically Driven Timeline

Conclusions

- The ILC design is proceeding toward an engineering design (EDR) in 2010.
 - Be ready to propose construction when LHC results justify!
- R&D program is being globally coordinated to determine gradient, electron cloud, industrialization, mass production.
 - Overall priorities are being set for risk reduction
 - There are regional programs to develop SCRF expertise and prepare to bid to host
- Detector R&D/design also very important to be able to fully exploit the ILC (e.g. spatial & energy resolution)
 - Appointment of Research Director S Yamada for better coordination, better regional balance
 - LOIs in one year

IIL