Continued investigation of variable β_{IP} optical configurations

Sha BAI IHEP/LAL Philip BAMBADE LAL

Motivation:

• Increased β_{IP} parameters may be useful to reduce the beam sensitivity to the energy spread and magnet displacement during early commissioning and approach an optimal value gradually

• Decreasing them can also be considered for the final optimisation

Based on :

Marie Thorey, CARE/ELAN Document-2007-005

Matching method

- Use MAD8 matching module
- Fit quadrupoles QM12, QM13, QM14, QM15, QM16 to get :
- -wanted beta functions
- $-\alpha_x, \alpha_y = 0$ $-D_x = 0$
- Fit sextupoles SD0, SF1, SD4, SF5, SF6 to cancel T122, T126, T166, T342, T346

Intermediate parameters

Beta y (m)	0.00002	0.00003	0.0001	0.0002	0.0004	0.0008
Sigy (nm)	54	21.76	34.6	48.62	68.67	97.1
KLQM12 (m ⁻²)	0.391	0.392	0.386	0.382	0.380	0.383
KLQM13 (m ⁻²)	1.03	1.02	0.989	0.971	0.954	0.934
KLQM14 (m ⁻²)	-2.12	-2.08	-1.64	-1.45	-1.32	-1.16
KLQM15 (m ⁻²)	-0.157	-0.186	-0.108	-0.0299	0.0681	0.105
KLQM16 (m ⁻²)	0.276	0.138	-0.0560	-0.168	-0.288	-0.374
KLSD0 (m ⁻³)	4.30	4.46	4.47	4.48	4.49	4.51
KLSF1 (m-3)	-2.45	-2.63	-2.64	-2.65	-265	-2.65
KLSD4 (m ⁻³)	14.2	14.5	14.6	14.6	14.6	14.7
KLSF5 (m ⁻³)	0.890	-0.804	-0.899	-0.917	-0.930	-0.939
KLSF6 (m ⁻³)	9.40	7.89	7.84	7.82	7.82	7.81

Variable beam size at the interaction point

Intermediate parameters

Beta y (m)	1.00E-05	2.00E-05	3.00E-05	1.00E-04	2.00E-04	4.00E-04
Sigy (nm)	24.08	23.14	24.91	34.6	55.71	76.12
$KLQM12(/m^2)$	3.66E-01	3.59E-01	3.54E-01	0.386	0.3739	3.75E-01
$KLQM13(/m^2)$	9.59E-01	9.43E-01	9.34E-01	0. 989	0.9521	9.54E-01
$KLQM14(/m^2)$	-1.98	-1.67	-1.52E+00	-1.64	-2.035	-2.05E+00
$KLQM15(/m^2)$	-3.79E-02	-1.07E-01	-1.51E-01	-0.108	-0.138	-1.38E-01
$KLQM16(/m^2)$	6.82E-01	6.40E-01	6.20E-01	-0.056	-1.00E-10	-1.00E-10
$KLSDO(/m^3)$	4.3	4.31	4.31	4.47	4.301	4.30E+00
$KLSF1(/m^3)$	-2.58	-2.58	-2.58	-2.64	-2.576	-2.58E+00
$KLSD4(/m^3)$	1.49E+01	1.49E+01	1.49E+01	14.6	14.86	1.49E+01
KLSF5(/m³)	-7.96E-01	-7.94E-01	-7.93E-01	-0.899	-0.7936	-7.94E-01
KLSF6(/m ³)	8.55E+00	8.55E+00	8.56E+00	7.84	8. 539	8.54E+00

Variable beam size at the interaction point

Minimum $\beta_y = 2.0 \times 10^{-5} \text{ m}$

- Matching method : only the first quadrupoles, not the entire line
- 2nd and 3rd order contributions to the beam size at IP
- Transport code is chosen, for MAD8 can only compute to second order

Input beam :

$$\sigma_{x} = \sqrt{\varepsilon_{x}\beta_{x}} = 1.21E - 4m$$

$$\sigma_{x'} = \sqrt{\varepsilon_{x}(\frac{1+\alpha_{x}^{2}}{\beta_{x}})} = 2.56E - 2mr$$

$$\sigma_{y} = \sqrt{\varepsilon_{y}\beta_{y}} = 6.09E - 6m$$

$$\sigma_{y'} = \sqrt{\varepsilon_{y}(\frac{1+\alpha_{y}^{2}}{\beta_{y}})} = 3.94E - 3mr$$

 $\delta = 0.0008\,fraction$

Transformation equation:

$$X_i(1) = \sum_j R_{ij} X_j(0) + \sum_{jk} T_{ijk} X_j(0) X_k(0) + \sum_{jk\ell} U_{ijk\ell} X_j(0) X_k(0) X_\ell(0)$$

Nominal $\beta_y = 1.0 \times 10^{-4} \text{ m}$:

vertical particle distributions for β_v = 1.0 \times 10⁻⁴ m:

ysize

Reduced β_y = 2.0 \times 10⁻⁵ m :

Reduced $\beta_y = 2.0 \times 10^{-5} \,\mathrm{m}$:

vertical particle distributions for $\beta_v = 2.0 \times 10^{-5}$ m:

ysize

Conclusions and prospects

- Quadrupoles and sextupoles can be fitted to get intermediate parameters for the ATF2 line commissioning
- The minimum vertical beam size occurs for $\beta_y = 2.0 \times 10^{-5}$ m. Third order aberrations dominate in this case but a core size of 24nm can still be obtained • Further optimisation of higher order properties would require more complete re-fitting of the final focus optics