GEM Panel for LP1

Akimasa Ishikawa

(Saga University)

For CDC group

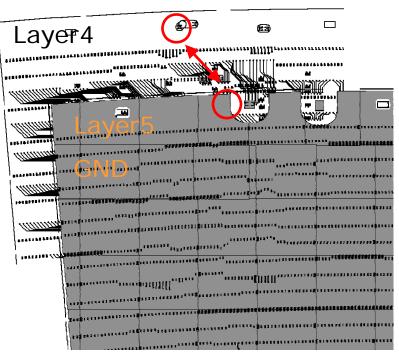
2007 Oct 21

Design Principle

- Three requirements
 - two track separability in φ direction less than 2mm
 - Position resolution less than 150um with Ar-CF₄ based gas
 - survive under 1% occupancy (C. Damerell's comment at tracker review)

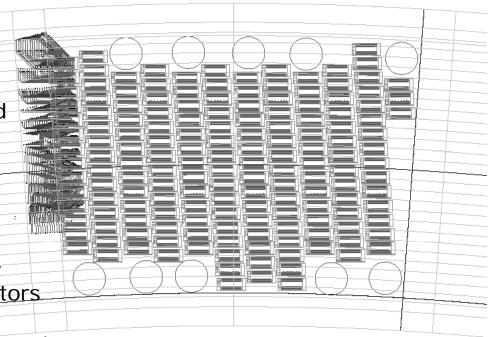
PCB

- Small pad size for two track separability and signal width of ~350um
- every two rows staggered to resolve S-shape systematics


GEM and Frame

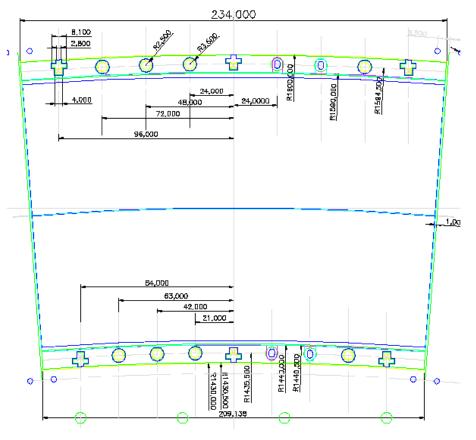
- Simple structure with thick double GEM
- Defocusing capability
- Minimization of dead space pointing to IP
- GEM gating
 - ion feedback probability less than a few x 10⁻⁴
 - Easy mounting onto multiplication GEM

Feedback from the PrePrototype Test

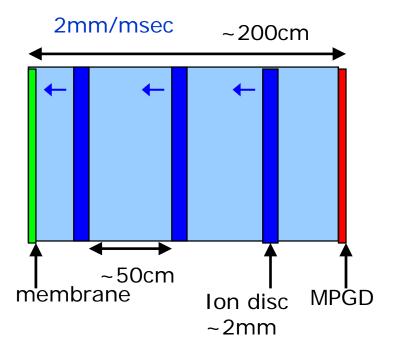

- Problems found to be fixed for LP1 panel.
- The biggest problem
 - Short btw HV line in PCB and GND or mount flange
 - Only single FR4 layer btw them
 - breakdown voltage for single FR4 layer (0.38mm) is 2.6kV.
 - \rightarrow at least two FR4 layers btw them
- Minor problems
 - HV connector screw head easily broken
 - Aluminum bolts hard to solder
 - we planned to adhere it with conductive paste but it is too weak, so choose soldering.
 - No alignment mechanism btw panel and flange
 - No GND connector.

No large modification for LP1 panel from PrePrototype

PCB

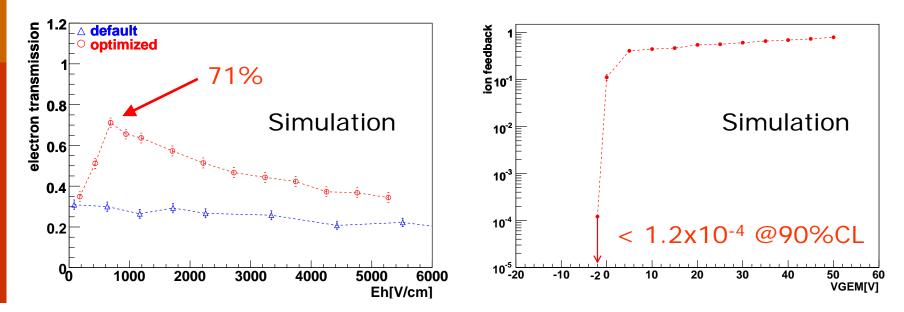

- 28 pad rows
- 176 and 192 channels for inner and outer half rows
- In total 5152 channels and 161 connectors
- every two rows staggered
- Pad size ~1x5mm²
- Connector density is slightly higher than PrePrototype since HV connectors are inside bounding box
- At least two FR4 layers btw HV line and GND, signal line and flange to avoid short.
- Design for wiring btw pad and connector is on going at Tsinghua
- Design to be finalized by early Nov 2007
- Delivered in Dec 2007

GEM and Frame


- Almost same as PrePrototype GEM
- 100um thickness
- Boundary at center of the GEM
- Size r=143~160cm, φ=8.39 deg, S=377cm²
- Icm wide and 2mm thick frames glued to inner and outer sides
 - 6mm gap for defocusing (4mm transfer gap + 2mm induction gap)

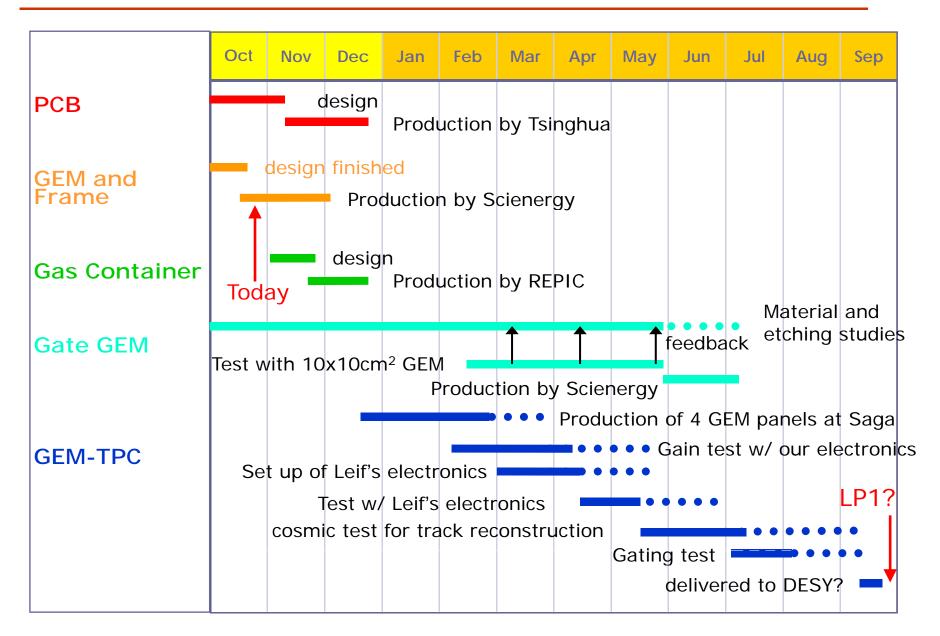
- Design was finalized
- Ordered to Scienergy
- Delivered in Dec 2007

Ion Density without Gating


- □ Gain ~ several x 10³
- Self ion suppression capability of MPGD
 - a few x 10⁻³ : MicroMEGAS measured by Saclay
 - a few x 10⁻³ : optimized triple GEM measured by Aachen
 - a few x 10⁻² : non-optimized double GEM naïvely estimated by Saga
- \Box O(10)~O(100) ions/electron drifting from MPGD.
- If we assume
 - Averaged Occupancy 1%
 - Pad size 1x5mm²
 - Time bucket 25nsec
 - 4 electrons/fired voxel
 - Ion drift velocity 2mm/msec
- Averaged ion density for ion disc is O(10³)~(10⁴) ions/mm³
- Can we survive without gating?

GEM Gating

□ Thinner and larger hole GEM, and lower drift field


- 12.5 um^t insulator and 1 um^t electrode (50um^t and 5um^t for nominal GEM)
- 100 um hole diameter (70um for nominal GEM)
- Ed=120 V/cm (diffusion minimum)
- 71% electron transmission
- < 1.2 x 10⁻⁴ ion transmission at 90% C.L. (simulate only 20k ion events)
- a few x 10⁻⁶ including self ion suppression of double GEM
- Insulator material, electrode thinning and etching method are being studied by Scienergy.
- Hope to finish the study by May 2008 \rightarrow delivered in July 2008

Other Items Needed to Test GEM Panels

- Flange for panel mounting on End Plate/Our Gas Container.
 - To be supplied by Dan.
- LP1 Electronics
 - To be supplied by Leif.

Schedule

