D. P. Peterson Cornell University, Laboratory for Accelerator-based ScienceS and Education

See also: http://w4.lns.cornell.edu/~dpp/linear_collider/LargePrototype.html

This project is supported by the US National Science Foundation (LEPP cooperative agreement) and an LCDRD consortium grant

Drawing from DESY 2007-08-09, 2007-09-18

LABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Endplate/band geometry (3GEM+G) 2007-10-21

Endplate/band geometry (3GEM=G) 2007-10-21

Endplates drawings were prepared for sending to vendors and preliminary quotes 2007-10-19.

Missing: gas holes skirt holes fun holes

The missing items will not significantly affect evaluation by potential vendors.

LABORATORY FOR ELEMENTARY-PARTICLE PHYSICS

Downlow in the second of th	1	. 1	2	3	4	5	6	7	I		s s		9	
Scale is a second is a	ION DATI	SYN. ZONE DESCRIPTION	SYM. ZOP					DESCRIPTION	EXDIM YDIM	HOL	DESCRIPTION	YDIM	XDIM	HOLE
SCALE 1/2 Output to the second sec				A11 -A10	A12-	A13-		Ø6.000 mm THRU Ø6.000 mm THRU	374.841 29.501 374.841 -29.501	B1 B2	Ø6.100 mm THRU Ø6.100 mm THRU	-376.000 -371.371	0.000	A31 A30
)	1/ 1 ^{-B32} A10			SCALE 1/2	Ø6.000 mm THRU Ø6.000 mm THRU	365.611 -87.775 347.379 -143.889	B3 B4	Ø6.100 mm THRU Ø6.100 mm THRU	-371.371 -357.597	58.819 -116.190	A32 A29
<section-header></section-header>			34 - 48		244	A14- B29-	SCALE 172	Ø6.000 mm THRU Ø6.000 mm THRU	320.593 -196.459 285.913 -244.192	B5 B6	Ø6.100 mm THRU Ø6.100 mm THRU	-357.597 -335.018	116.190 -170.700	A33 A28
<section-header></section-header>		,	-B35 A7			A15 B28	Outside	Ø6.000 mm THRU	244.192 -285.913	B7	Ø6.100 mm THRU	-335.018	170.700	A34
					-			Ø6.000 mm THRU	143.889 -347.379	B9	Ø6.100 mm THRU	-304.190	221.007	A35
<section-header></section-header>		16 	# B36			B27		Ø6.000 mm THRU Ø6.000 mm THRU	29.501 -374.841	B10 B11	Ø6.100 mm THRU Ø6.100 mm THRU	-265.872 -265.872	-265.872 265.872	A26 A36
All with a law bit is a law		1				_ `_*]/	A 17-	Ø6.000 mm THRU Ø6.000 mm THRU	-29.501 -374.841 -87.775 -365.611	B12 B13	Ø6.100 mm THRU Ø6.100 mm THRU	-221.007	-304.190 304.190	A25 A37
<section-header></section-header>		► ^{-B37} -A5				``₩₩₩	AII	Ø6.000 mm THRU Ø6.000 mm THRU	-143.889 -347.379 -196.459 -320.593	B14 B15	Ø6.100 mm THRU Ø6.100 mm THRU	-170.700	-335.018	A24
<text></text>		Bas				↓	B2 5	Ø6.000 mm THRU	-244.192 -285.913	B16	Ø6.100 mm THRU	-116.190	-357.597	A23
		A4					A18	Ø6.000 mm THRU Ø6.000 mm THRU	-285.913 -244.192 -320.593 -196.459	B17 B18	Ø6.100 mm THRU Ø6.100 mm THRU	-58.819	-371.371	A39 A22
All the loss is the second sec		Mar Das				·	Day A	Ø6.000 mm THRU Ø6.000 mm THRU	-347.379 -143.889 -365.611	B19 B20	Ø6.100 mm THRU Ø6.100 mm THRU	-58.819 0.000	371.371	A40 A21
		-839	18			նլ		Ø6.000 mm THRU	-374.841 -29.501	B21	Ø6.100 mm THRU	0.000	376.000	A1
All of the two defines the two defines the the two defines the the le locations B1, B11, B21, B31.		AS	11			5	X1//	Ø6.000 mm THRU	-365.611 87.775	B22 B23	Ø6.100 mm THRU	58.819	371371	A20
All of the left of the lef		\\ [₩]	<i>[</i>]			<u>ار ا</u>	B23-\{*/	Ø6.000 mm THRU Ø6.000 mm THRU	-347.379 143.889 -320.593 196.459	B24 B25	Ø6.100 mm THRU Ø6.100 mm THRU	116.190 116.190	-357.597 357.597	A19 A3
All via trait to the state of the state o	.2	A2	Contractor and				A20	Ø6.000 mm THRU Ø6.000 mm THRU	-285.913 244.192 -244.192 295.012	B26	Ø6.100 mm THRU Ø6.100 mm THRU	170,700	-335.018 335.018	A18 A4
All		-P1		[8]	141		B22	Ø6.000 mm THRU	-196.459 320.593	B28	Ø6.100 mm THRU	221.007	-304.190	A17
An decision within a frame defind by the hole locations B1, B11, B21, B31.	. 1			l II i	141		A 21-	Ø6.000 mm THRU Ø6.000 mm THRU	-143.889 347.379 -87.775 365.611	B29 B30	Ø6.100 mm THRU Ø6.100 mm THRU	221.007 265.872	304.190 -265.872	A5 A16
Ai 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.1	AI					ALI	Ø6.000 mm THRU	-29.501 374.841	B31	Ø6.100 mm THRU Ø5.100 mm THRU	265.872	265.872	A6
An is a bin		-B2		· · · · · · · · · · · · · · · · · · ·			B21-	Ø6.000 mm THRU	87.775 365.611	B33	Ø6.100 mm THRU	304.190	221.007	A7
All i la la bit de la bit	40	A40	/	141	181		A22	Ø6.000 mm THRU Ø6.000 mm THRU	143.889 347.379 196.459 320.593	B34 B35	Ø6.100 mm THRU Ø6.100 mm THRU	335.018 335.018	-170.700	A14 A8
And the state of the state way that the state of the stat		11 11 the 12	11			l	B20	Ø6.000 mm THRU Ø6.000 mm THRU	244.192 285.913 285.913 244.192	B36 B37	Ø6.100 mm THRU Ø6.100 mm THRU	357.597 357.597	-116.190	A13 A9
$\frac{2}{All} \frac{1}{2000} \frac{1}{20100} \frac{1}{20100} \frac{1}{20100} \frac{1}{2000} \frac$							A 23_ [#]]	Ø6.000 mm THRU	320.593 196.459	B38	Ø6.100 mm THRU	371.371	-58.819	A12
$\frac{1}{1000 0.00 $,	-A39			101		the second	Ø6.000 mm THRU Ø6.000 mm THRU	347.379 143.889 365.611 87.775	B39 B40	Ø6.100 mm THRU	376.000	0.000	A10 A11
Specification for holes in the flange area. Dowel holes 'B' have tolerance +/- 0.002 inch, within a frame defind by the hole locations B1, B11, B21, B31. $\frac{A24}{B18}$		14	11		114	1	BI9	Value	0.000 0.000	41				
Specification for holes in the flange area. Dowel holes 'B' have tolerance +/- 0.002 inch, within a frame defind by the hole locations B1, B11, B21, B31. $B_{1,2}$		-B4			L L	۱.	A24							
Specification for holes in the flange area. Dowel holes 'B' have tolerance +/- 0.002 inch, within a frame defind by the hole locations B1, B11, B21, B31. $\frac{12}{10}$		A38				, 1 1	B18-							
Specification for holes in the flange area. Dowel holes 'B' have tolerance +/- 0.002 inch, within a frame defind by the hole locations B1, B11, B21, B31. $\frac{B1}{A2} + \frac{B1}{A2} + B1$		-B5					A25							
Specification for holes in the flange area. Dowel holes 'B' have tolerance +/- 0.002 inch, within a frame defind by the hole locations B1, B11, B21, B31. $\frac{1}{10000000000000000000000000000000000$		A37	1 Int				B							
$\begin{array}{c} A26 \\ \hline \\ B16 \\ \hline \\ A27 \\ B16 \\ \hline \\ A29 \\ B10 \\ \hline \\ A29 \\ B10 \\ \hline \\ A29 \\ B10 \\ A20 \\ \hline \\ B10 \\ \hline \\$		Х- <u>B</u> 6	# // В			Lall Harrison		e flange area	oles in th	for ł	cification f	Spee		
$ \begin{array}{c} D_{10} & & & & \\ D_{20} & & $		-A36	A.			B16	A26	5				•		
$\begin{array}{c} A27\\ B15\\ A29\\ B14\\ A29\\ B13\\ B12\\ A30\\ B12\\ A31\\ B14\\ B14\\ B14\\ B14\\ B14\\ B14\\ B14\\ B1$			→ ⁻ ⁻ ^b /			BID Y								
Dowel holes 'B' have tolerance +/- 0.002 inch, within a frame defind by the hole locations B1, B11, B21, B31. $\frac{1}{10000000000000000000000000000000000$		<i>)</i>	A35			A27- B15								
Dowel holes 'B' have tolerance +/- 0.002 inch, within a frame defind by the hole locations B1, B11, B21, B31. $\frac{1}{2}$			A34			A28 B14								
Dowel holes 'B' have tolerance +/- 0.002 inch, within a frame defind by the hole locations B1, B11, B21, B31. $M = \frac{1}{2} $			33	++++B10	B13	A 29								
Dowel holes 'B' have tolerance +/- 0.002 inch, FOR MOLHNUL UBPLONT USED NY FOR MOLHNUL UBPLONT USED NY ESCORPTON OIL ON TOTAL within a frame defind by ALSUNE SETENDER LIBRONT USED NY Intel ON TOTAL Intel ON TOTAL <t< td=""><td></td><td></td><td></td><td>-B11 -A32</td><td>A30 B12 A31</td><td>A2)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-B11 -A32	A30 B12 A31	A2)								
within a frame defind by the hole locations B1, B11, B21, B31.	20	C1 G2 G3			FOR MICHINING LURPICIENT LIKE			2 inch,	rance +/- 0.00	e tole	l holes 'B' hav	Dowe		
the hole locations B1, B11, B21, B31.	HEMARKS	CUANTITY QUANTITY	NO. DESCRIPTION		ALKALINE DETERGENT LUBRICAN OR EQUIVALENT APPROVED BY C			,		ıd by	n a frame defin	within		
Statistical Number OK DATE NAME COMPACING <td></td> <td>CORNELLUE</td> <td>(180-192 Endplate.idw</td> <td>LS DISTR. CAD FILE NAME</td> <td>TECHNICAL RESOURCE A PPRO REQUIRED BEFORE FABRICAT</td> <td></td> <td></td> <td></td> <td>1, B21, B31.</td> <td>31, É1</td> <td>ole locations B</td> <td>the ho</td> <td></td> <td></td>		CORNELLUE	(180-192 Endplate.idw	LS DISTR. CAD FILE NAME	TECHNICAL RESOURCE A PPRO REQUIRED BEFORE FABRICAT				1, B21, B31.	31, É1	ole locations B	the ho		
MUDHE SHOP Namedic 0	Newman Laborator haca, NY 14853	LEPP Royd R. Newmork thaca, N	UNIVERSITY ILE	DATE NA BO	OK AFTING (0*Connel):									
		INVOLUTION INC.	CARDIONORP POP ILLING ADDRESS	0 0 1 H + M	CHINE SHOP (Kaminski): EMISTRY (Conklin): CYDENING SUND Jawlaat									
TARKAK ERBADIG Steenool:		Prototype Endplate	LCTPC Large Prototy	N PACTOR A	NACE BRAZING (Shewood): IN WELDING (Searc):									
TUTE STARS STARS STARS TO STARS ST	6080-102	AWN FOR DATE SCALE D 6/	DRAWN BY DRAWN FOR MDS Paterson	20 cassas ar Pelanto	LONG OTHER (Galagher): LITIES INTEGRATION (Galagher): 20/8000 MS (Lonizonal):									
9 \$ 7 6 5 4 3 2	1	1	2	3	4	5	6	7		1	s		9	
										_		<u> </u>		
									-	D	-ED			LL

While the endplate drawings are being sent to outside vendors, a series of module back-frames will be made in the Cornell shop.

a total of 4 back-frames,

2 for Micromegas, pad board 3.2mm,

2 for GEM

I need up-to-date information on the need of GEM. Currently I planned for 18mm of material: 2mm pad board, 3x 2mm GEM, 10mm Gate. In the absence of firm numbers, I am producing back-frames for 8mm material. (They can be re-machined, but they may warp.)

This will be the full process:

75 μ m oversize liquid N₂ stress relief 25 μ m oversize liquid N₂ stress relief final cut

Stress relief test piece

This shows the first in a series of "stress relief test pieces".

This has been cut with a center opening of 30cm wide. The "mullions" are the same size as proposed in the endplate drawing: 18mm at the widest width, 14mm in depth.

This is the first baseline part, with no stress relief.

It has been fully measured on a CMM. The mullion position is distorted upward by 500µm (0.020inch).

The part was revised to have the strengthening section as shown in the current endplate.

A close-up of the part shown in the previous slide.

Machining a Stress Relief Test Piece, 2007-05-25

Motivation:

A position tolerance of $<25\mu$ m is needed for the modules to decouple the calibration of the magnetic field from the position calibration of the modules.

I am trying to provide, at delivery, <25μm position tolerance of the mullions. The endplate will then be evaluated after some service time to determine the ability to maintain this tolerance.

The program:

6 plates are being made to the revised drawing. A multi-step production is used:

- 1) machine to 1000 μ m oversize
- 2) machine to 750 µm oversize,
- 3) stress relief
- 4) machine to 250 µm oversize,
- 5) stress relief
- 6) machine to drawing dimensions

Stress relief processes:

- 2 plates (3)heat to 325F, (5)heat to 650F
- 2 plates rapid cooling to liquid N₂
- 2 plates ultrasonic cleaner, 6 hours

Coordinate Measuring machine (CMM), 2007-05-25

CMM, 2007-05-25, Z measurements

Example of measurement after the 2nd machining.

Units are milli-inch. 0.001 inch = $25.5 \,\mu\text{m}$

This is the Z view.

There is a 30 μm bowing in z-x .

There is a twist about x from left to right of 25 $\mu m.$

/home/dpp/BulkDisk/StressReliefCmm/read3/Plate3.txt 3 machine 2

 \mathbf{Z}

CMM, 2007-05-25, y measurements

Example of measurement after the 2nd machining.

Units are milli-inch. 0.001 inch = $25.5 \,\mu\text{m}$

This is the y view.

There is a 30 μ m bowing in y of the indicated mullion.

Endplate loading 2007-08-17

A test piece was loaded with 5 kg, 2.6millibar

The center of the longest span deflected by 7 μ m.

Gas Seal test, 2007-08-21

Test of the o-ring seal.

It can be mounted either way.

- model of mullion
- back-frame
- clamping bracket

2007-08-21

improved box seal

improved module seal-

test of blank plate

Gas Seal test, 2007-08-21

After 1 week, pressure changed from 20.1 inch water (~40 millibar) to 13 inch water

Calculate: leak rate through module seal = 0.13 cc/hour

(After another 8 weeks, the pressure has dropped to ~ 8 inch water, a much lower leak rate.The seal does not require pressure.)

decisions

Bolt size: (I propose 8mm, DESY proposes 5mm)

The proposed self tapping insert will require more a larger insert hole, limiting mounting screws to 5mm.

I have ordered parts, as used in the gas seal test, with (5mm x 0.8mm) and (6mm x1mm) threads. Tests of torque to make the seal will follow.

O-rings

Figure 1.1 How an O ring works. (a) As installed. (b) Under pressure. (From The Parker O-Ring Handbook, courtesy of Parker Seal Group.)

4 surface contact

2 surface contact

I will know more about the schedule after first discussions with vendors.

