Software Status for GLD Concepts

Akiya Miyamoto 31-October-2007 ILD Optimization Meeting

References:

- Y.Sugimoto, "GLD and GLDc", talk at ALCPG07, ILD meeting
- T.Yoshioka, "LCIO interface and study by PandoraPFA", talk at ALCPG07, Simulation session

GLD Configuration

- Moderate B Field: 3T
- R(ECAL) ~ 2.1m
 - ➤ ECAL: 33 layers of 3mm^t W/2mm^t Scint./1mm^t Gap
 - > HCAL: 46 layers of
 - 20mm^t Fe/5mm^t Scint./1mm^t Gap
- Photon sensor: MPPC ~O(10M) ch.
 Configuration of sensor is one of the R&D items

GLD Configuration - 2

TPC:

R: $0.45 \rightarrow 2.0$ m, ~200 radial sample

Half Z: 2.3m

MPGD readout: σ_{r_0} <150µm

SIT: Silicon Strip Barrel/Endcap

VTX:

Fine Pixel CCD: ~5x5mm²

2 layers x 3 Super Layers

Our software tools

- ➤ Link to various tools at http://acfahep.kek.jp/subg/sim/soft
- GLD Software at http://ilcphys.kek.jp/soft
- ➤ All packages are kept in the CVS. Accessible from http://jlccvs.kek.jp/

Jupiter

- Geant4.8.2p01 has been used. Updating to Geant4.9.0p01 in progress. (hard to remove infinitely small step length in tracking)
- Generator inputs:
 - ◆ ROOT (JSF) format is a default. Can read CAIN background data.
 - StdHep file: Single particle and qqbar events OK. But ttbar events was not good.
- Physics List:
 - ◆ J4PhysicsList (taken from genat4 examples)
 - ◆ LCPhysicsList tried. But has not been seriously tested.
- Geometry:
 - ◆ Parameters in ASCII file are read in at run time.
 - ◆ Different B Field, Rin(ECAL), etc. had been tried. So, change detector parameters are easy if detector topologies are same.

GLD Geometry in Jupiter

Satellites package

- Satellites is a collection of reconstruction tools for Jupiter data.
- Run as a JSF module, i.e,
 - Jupiter data and reconstructed results are saved in a ROOT tree.
 - Each module is relatively independent, thus easy to implement different reconstruction algorithm according to user interests
- Package includes
 - IO: Geant4 objetcs to ROOT objects/ Interface to LCIO
 - Hit digitizer: Mostly simple smearing of exact hits
 CAL hit maker: include a cell signal merger for strip configuration
 Run Jupiter with 1cmx1cm tile size and merge cell signals in
 Satellites
 - Cheated track finder and Kalman fitter for TPC, IT, and Vertex
 - Cheated PFA
 - Realist PFA (GLD-PFA)
 - Jet clustering

LCIO Interface

• An interface which converts Jupiter output to LCIO format has been successfully implemented.

Performance of single particles, $Z \rightarrow$ qqbar and Zh events were checked by using the MarlinReco and PandoraPFA.

Analyze same y Jupiter events by MarlinReco and Satellites

- Plots of calorimeter energy sum
- Resolutions obtained by Satellites and MarlinReco are consistent
- Consistency check of event-by-event basis is yet to be studied

Pandora Performance (1)

- Jet energy resolution is obtained to be $\sim 34\%/\sqrt{E}$ in barrel region.
- Worse resolution in the EndCap region.

10/25/2007 ALCPG07 @ Fermilab 10

For Z0 events, Satellites and GLD-PFA resolution is ~30%/Sqrt(E) For Higher energies (350 GeV), Jupiter-PandoraPFA performs better than GLD-PFA Need more studies to understand consistencies and differences.

GRID in Japan

- GRID for ILC in Japan has been operational since late 2006.
- KEK, Tohoku Univ. and Kobe Univ. are members of ILC-VO. Kobe Univ. is a member of CALICE-VO KEK-CC supports both IILC-VO and CALICE-VO
- KEK is operating WLCG production sites. Resources we have are very limited, but 955 jobs/570 CPU hours have been used in ILC-VO at KEK.
- File transfer:
 - ■Tape access and security setting had been problems
 - After resolving these problems
 DESY→KEK transfer speed (for replica) is several MB/sec
 - Sample Jupiter data are put on /grid/ilc/users/miyamoto/....)
- JSF/Jupiter/Satellites on GRID are under preparation.
 - Tests Jupiter jobs for SLC3 systems are now running at KEK-Grid

Summary

- Jupiter-LCIO interface is ready for studies based on GLD'/LDC'.
- ■We are developing tools for ILC studies on GRID

Backup Slides

Y.Sugimoto, ALCPG07

Baseline Design

Y.Sugimoto, ALCPG07

Detector Parameters

- VTX
 - 6 layers (3 doublets)
 - R=20(18) mm 50 mm(Strongly depends on machine parameters)
 - Fine pixel CCD as the baseline design
- SIT
 - DSSD, 4 layers, R=9 30 cm
 - 7 discs in forward region, Z=15.5 - 101.5cm
 - Bunch ID capability
- TPC
 - R=45 cm 200 cm
 - Z = 230 cm

Detector Parameters

- ECAL
 - W/Scintillator/Gap = 3/2/1 mm
 - 33 layers
 - 1cmx4cm scintillator strips, w.l.s. fiber+MPPC (SiPM) readout
 - 2cmx2cm scintillator tile as an option
 - 26 X₀, 1 λ
- HCAL
 - Pb(Fe)/Scinti./Gap = 20/5/1 mm
 - 46 layers
 - 1cmx20cm scintillator strips + 4cmx4cm scintillator tile, w.l.s. fiber+MPPC readout
 - 5.7 λ
- Muon detector
 - 8/10 layers in 4-cm gaps between 25-30 cm thick iron slabs of return yoke
 - X-Y scintillator strips with w.l.s.fiber+MPPC readout

Y.Sugimoto, ALCPG07

Detector Parameters

PFA

	GLD	LDC	SiD
B (T)	3	4	5
R _{CAL} (m)	2.1	1.6	1.27
p _t ^{min} in CAL (GeV/c)	0.95	0.96	0.95
B R ² _{CAL} (Tm ²)	13.2	10.2	8.1
t _{HCAL} (λ)	5.7	4.6	4
E _{store} (GJ)	1.6	1.7	1.4
R _{Fe} (m)	7.2	6.0	6.45