ZHH Study in GLD

'07 11/14 Takubo (Tohoku Uuniv.)

Introduction

Motivation of ZHH study

- Investigation of the ILC performance for heavy Higgs (M_H>160GeV).
 - > Higgs decay to WW instead of bb.
 - > ZHH must be studied, separated from light Higgs case.
- ZHH for light Higgs (M_H<160GeV) is also studied.

Current activity

- Investigation of the cross-section and kinematic distributions.
 - > Validity check of event generator calculation (MadGraph).
- Preparation of analysis code for quick-simulator.
- Study of B.G. processes.

Current status is presented.

ZHH cross-section

 $\sigma(ZHH)$ is calculated by MadGraph as a function of M_H.

- Measurement for $M_H > 160 GeV$ is difficult at $E_{CM} = 500 GeV$.
- $\sigma(ZHH)$ is almost the same for E_{CM} =750GeV and 1TeV.
 - E_{CM} =750GeV is enough to study for M_H >160GeV.

The B.G. contamination is investigated for $M_H=170$ GeV.

ZHH v.s. ZWWWW

- The intrinsic B.G. in ZHH->ZWWWW was studied for $M_H=170$ GeV.
- $\sigma(ZWWWW)$ was compared with $\sigma(ZHH) \times BR(H->WW)^2$.

> BR(H->WW) : 90%

- $\sigma(ZHH)$ has a peak at E_{CM} of ~750GeV.
- B.G. becomes larger for $E_{CM} > 800 GeV$.

 E_{CM} =750GeV is the best for M_H =170GeV.

g(HHH) v.s. $\sigma(ZHH->ZWWWW)$

g(HHH) dependence of $\sigma(HZZ->ZWWWW)$ was investigated.

- $g(HHH) = g_{SM}(HHH) \times (1 + \lambda)$
- The cross-section dependence on g(HHH) is clearly seen.

The kinematic distributions of Z and W will be checked.

MadGraph v.s. GRACE

Validity of MadGraph calculation was checked by comparison with GRACE.

• $M_H=170 GeV, E_{CM}=550 GeV$

$\sigma(ZHH \rightarrow ZWWWW)$

- **GRACE** : 64.9 ab
- MadGraph: 63.3 ab
 - $> \sigma(ZHH \rightarrow ZWWWW) = \sigma(ZHH) \times BR(H \rightarrow WW)^2$
 - $> \sigma(ZHH) : 67.896 \pm 0.709 \text{ ab}$
 - \rightarrow BR(H \rightarrow WW) : 0.9656 by HDECAY
- This difference is within calculation accuracy of MadGraph.
- The result is also consistent with WHIZARD.

The kinematic distributions are compared.

MadGraph v.s. GRACE (2)

The kinematic distributions of MadGraph were compared with GRACE.

- The momentum and angular distribution were consistent.
- Reconstructed $(M_{H1} + M_{H2})$ distribution was also consistent.

The cross-section and kinematic distributions are consistent with GRACE.

Event display in Quick-Sim

• Simulation is performed by quick-simulator.

ZHH events produced by MadGraph are read

successfully in quick-simulator.

> Z and H are decayed by Pythia.

Development of analysis code is ongoing.

The first analysis result will be presented at the next ACFA meeting on March.

Summary

- Study of ZHH events was started.
 - > MadGraph is used for event generator.
 - > Simulation is performed for quick-simulator.
- $\sigma(ZHH)$ is calculated by MadGraph.
 - > The kinematic distribution is consistent with GRACE.
- $\sigma(ZHH)$ depends on λ_{HHH} clearly.
 - > The kinematic distribution will be investigated.
- Development of the analysis code for quick-simulator is ongoing.