Full Detector Simulation of WW Scattering

David Ward and Wenbiao Yan

Motivation

- Electroweak symmetry breaking
 - Light Higgs boson: weakly interacting model
 - * SM + extensions
 - * unitarity problem for WW scattering \Leftarrow Higgs
 - No light Higgs boson: strongly interacting model
 - * model is non-renormalizable \Longrightarrow new physics at $\Lambda = 4\pi
 u = 3.1$ TeV
 - * new physics needed at TeV scale to restore unitarity for WW scattering
- WW scattering provides information on the electroweak symmetry breaking
- EW interactions at low energies can be described by EW Chiral Lagrangian
 - has operators of higher dimensions and introduce anomalous couplings
- For WW scattering, there are two 4D operators at SU(2)_c conserving case $L_4 = \frac{\alpha_4}{16\pi^2} tr(V_\mu V_v) tr(V^\mu V^v)$ $L_5 = \frac{\alpha_5}{16\pi^2} tr(V_\mu V^\mu) tr(V_v V^v)$

anomalous couplings $\alpha_4 \& \alpha_5$ are related to the scale of new physics. $\alpha_4 \& \alpha_5$ are zero in the SM, and are model dependent

Motivation

- Sensitivity of α_4 & α_5 at linear collider ? TESLA Fast simulation
 - LC-PHSM-2001-038: SIMDET for TESLA @ 800 GeV
 - hep-ph/0604048: SIMDET for TESLA @ 1000 GeV
 - Andres F. Osorio's thesis: SIMDET for TESLA @ 800 GeV
- Motivation for this work
 - WW/ZZ separation
 - Extract α_4 & α_5 :
 - * Detector model: LDC00, LDC00Sc, LDC01, LDC01Sc

 $\begin{array}{ccc} \text{LDC00Sc} & \text{vs.} & \text{LDC00} \\ \text{LDC01Sc} & \text{vs.} & \text{LDC01} \end{array} \end{array} \right\} \Longrightarrow \text{Analog Hcal vs. Digital Hcal}$

 $\begin{array}{ccc} LDC00Sc & vs. & LDC01Sc \\ LDC00 & vs. & LDC01 \end{array} \end{array} \Longrightarrow different detector size \\ * PFA: PandoraPFO PFA vs. Wolf PFA vs. Track based PFA \\ \end{array}$

Detector models

- LDC00Sc vs. LDC01Sc
 - Ecal
 - * LDC00Sc: 30X 1.4mm + 10X 4.2 mm as W radiator
 - * LDC01Sc: 20X 2.1mm + 10X 4.2 mm as W radiator
 - Detector size
 - * LDC00Sc: tpcOuterRadius = 1690; TPC_Ecal_Hcal_barrel_halfZ = 2730
 - * LDC01Sc: tpcOuterRadius = 1580; TPC_Ecal_Hcal_barrel_halfZ = 2200
- LDC00Sc vs. LDC00
 - LDC00Sc is exactly the same as LDC00, but with scintillators as sentive material for the Hcal. LDC00 has RPC
- LDC01Sc vs. LDC01
 - LDC01Sc is the same as LDC01, but with scintillators as sentive material for the Hcal

WW/ZZ MC production

• $\sqrt{s} = 800 \text{ GeV}$; polarization RL 40% 80%; with ISR; w/o beamstrahlung

Channel	$\sigma_{800GeV}~(fb)$	Generator
$ u_e \bar{ u}_e WW \rightarrow u_e \bar{ u}_e q \bar{q} q \bar{q}$	8.55	Whizard 1.50
$ u_e \bar{ u}_e ZZ ightarrow u_e \bar{ u}_e q \bar{q} q \bar{q}$	3.97	Whizard 1.50
$ u_e ar{ u}_e q ar{q} q ar{q}$ (background)	5.46	Whizard 1.50
$e u_e \mathrm{WZ} ightarrow e u_e q ar{q} q ar{q}$	38.75	Whizard 1.50
$ee{ m WW/ZZ} ightarrow eeqar q qar q$	289.43	Whizard 1.50
$t \overline{t} o X$	299.63	PYTHIA 6.1
$ u_e e W ightarrow u_e e q ar q$	108.59	Whizard 1.50
$\overline{\nu_{\mu,\tau}}\overline{\nu}_{\mu,\tau}}WW/ZZ \rightarrow \overline{\nu}_{\mu,\tau}\overline{\nu}_{\mu,\tau}q\overline{q}q\overline{q}$	8.85	Whizard 1.50

• processes with $\sigma < 100 fb$: sample with $\mathcal{L} = 1000 \text{ fb}^{-1}$

• processes with $\sigma > 100 fb$: sample with $\mathcal{L} = 500 \text{ fb}^{-1}$

Likelihood from combined WW/ZZ @ 800 GeV

- LDC00Sc vs. LDC01Sc
- Blue: Pandora PFA @ LDC00Sc
- Pink: Pandora PFA @ LDC01Sc

Likelihood from combined WW/ZZ @ 800 GeV

- Perfect Pandora PFA vs. Pandora PFA @ LDC00Sc
- Blue: Pandora PFA @ LDC00Sc
- Red: Perfect Pandora PFA @ LDC00Sc

Likelihood from combined WW/ZZ @ 800 GeV

- Blue: results using LDC00Sc detector model; full detector simulation
- Red: Predrag Krstonosic's results @ LCWS 2005 using TESLA fast simulation
- Black: LC-PHSM-2001-038 using TESLA fast simulation

Summary and outlook

- We study WW scattering with LDC00Sc/LDC01Sc detector models, and extract $\alpha_4 \& \alpha_5$, which are comparable with that of TESLA fast simulation.
- Ongoing works
 - − Track finding: TrackCheater → full LDC tracking
 - Different PFAs: Pandora PFA vs. Wolf PFA vs. Track based PFA
 - Different detector models: LDC00Sc, LDC01Sc, LDC00 and LDC01
 - WW scattering at $\sqrt{s} = 1000$ GeV