

Ground Motion and Vibration for LET Simulation, "Point of Contact"

Paul Lebrun CD/FNAL

And...

Remarks on Fast Groundmotion

- DESY GM Database
- Examples
- Remarks for Simulations

Dirk Kruecker DESY

Thanks to R. Amirikas A. Bertolini W. Bialowons

Motivation & Context

- Focus of LET simulation will be on dynamic issues
 - Quality of Steering or re-Steering on realistic beam lines and accelerators.
 - Vibrations and short term ground motion. (minutes to hours)
 - Keep it aligned => Feedback loops
 - Ground motion on longer time scales.
- Critical!
 - In the current design, beam based alignment is SOIely used to keep the LET operational..
 - (Is this wise?)
 - Feedback loops relatively trivial without Ground Motion or vibration..

Terminology

- Slow Motion
 - ATL like
- Fast Seismic Vibration
 - Elastic waves

A. Seryi Models ABC

- Cultural noise & technical noise
 - Ground motion by human activity
 - Cryogenic pumps etc.

DESY Database

0.1 Hz -

Experts (Real Name)

- Cultural Noise and Vibration (Dirk Kruecker, DESY)
 - R. Amirikas,... DESY.
 - Mike McGee et al, FNAL
 - CERN, KEK?
- Ground Motion (Paul Lebrun, FNAL)
 - KEK: R.Sugahara, .. (S. Takeda...)
 - DESY: H. Ehrlichmann
 - CERN: ?
 - FNAL: Jim Volk, (S. Singantulin, V. Shiltsev,..)

References

- Relatively recent, far from complete, but it's a start:
 - Ground Motion & Comparison of Various Sites. R. Amirikas et al, EUROTeV report 2005-023
 - Introducing a Homepage for Information Retrieval and Backup and.. R. Amirikas et al, PAC07 WEPMN07
 - A high precision double tubed Hydrostatic leveling system for Accelerator Alignment systems. Fermilab-Conf 06-508-AD, S. Singantulin, et al
 - Characteristics of Ground Motion At KEK and Spring-8,
 Y. Nakayama et al, EPAC 2004.
 - Incoherent Ground Motion, S. Takeda et al, EPAC 2000
 - A. Seryi, Ground Motion Models for Future Linear Colliders, EPAC 2000, THP6A14

Raw Data Repositories

- Data repository:
 - http://vibration.desy.de/
 - Impressive collection of data from around the world
 - Seimisc, same instrument
 - http://rexdb01.fnal.gov:8081/ilc/ILCGroundApp.py/index
 - Access to FNAL Hydrostatic level data, NuMi tunnel and Aurora mine.

The DESY Database on Ground Motion

http://vibration.desy.de

- GM measurements since 2002
 - Seismometer and geophone measurements
- 20 sites all over the world including:
 - FNAL, SLAC, CERN, KEK, DESY, ...
 - several locations for each site: tunnel, surface etc.
 - In most cases 1 week of data taking
 - –day and night variations
- Processed (PSD etc.) and raw data (200Hz sampling)
- In addition cold and warm Cryomodule measurements

DESY Ground Vibrations Database - a Snapshot

Global Design Effort

Examples

Day and night variation HERA

100 **PSD** 10 0.1 0.010.001 ₹0.0001 E-05 1E-06 - Asse, surface 1E-07 - Asse, 900m deep 1E-08 CERN, surface CERN, LHC tunnel 1E-09 -FNAL, surface 1E-10 -FNAL, Numi tunnel 1E-11 0.01 0.1 10 100 Frequency (Hz)

Coherence measured at different distances

Variation vs. Tunnel Depth for some quiet places

RMS(f > 1 Hz) Asse: 5 nm (surface) CERN: 22 nm FNAL: 32 nm

Asse (900 m underground): 5 nm CERN (LHC tunnel): 2 nm cesign-Effent tunnel): 3 nm

Asse is a salt mine in Germany

PSD - Integrated PSD

The integrated PSD is related to the RMS $RMS(f_{1,}f_{2}) = \sqrt{\int_{f_{1}}^{f_{2}} S(f) df}$

Upper limit from this plot for [f1,f2=80Hz]: less than 500 nm above 1Hz (1 µm above 0.1Hz)

10 nm above 1Hz for quiet labs

Power Spectral Density

$$S_x(f) = 2\lim_{T \to \infty} \frac{1}{T} [X(f)]^2$$
$$X(f) = \int_{0}^{T/2} x(t)e^{-2\pi i ft} dt$$

How does this translate Into component vibration?

ilc

Cryomodule vibration stability data

- Data available
 - Superstruktur (type II), later was re-named module 7, room temperature
 - Module 6 (type III), both room temperature and cold (4.5 K)
 - Module 5 (type III), both room temperature and cold (4.5 K)
- Currently we are measuring
 - Vibration measurements in a string of cryomodules in FLASH (DESY): modules 4,5,6 7 at 4.5 K
 - Module 8 (type III+), both at room temperature and @ 2K, coming at the end of this year....
 - We will also study mechanical stability versus quad position in module 8.

Cryomodule vibration stability data

- What do we measure?
- Quad vs top vessel and ground in the vertical direction
- Room temperature and cold (4.5 K)
- Please take a look at:

http://vibration.desy.de/sites_measured/cryomodules/index_eng.html

Cryomodule 5 - Vibration Stability

cold measurements RF in operation (klystron nearby) noisy due to day time activities

Remarks for Simulations (D.K.)

- There is no common pattern
 - Cultural noise is site dependent
 - It depends on the technical installations inside and outside of the tunnel etc.
- A simple white noise (RMS <10 nm 500 nm) model might be sufficient as upper limit
 - On top of a slow motion model
- The problem under consideration defines the frequency range and the tolerable RMS
- A typical value for a quad inside a cryomodule is 100 nm
- Our raw data could be used as simulation input if a real world model is needed
- Transfer functions for cryomodules are available

From Raw Data to LET models..(P.L)

- Comments on Mission on "Simulation Input people":
 - Usually a bit more than conveying information
- For Ground Motion & Vibrations, "package(s)" are mostly likely needed to convert Raw Data to an actual simulated motion of a list of element.
 - Uncorrected Raw Data can be misleading.
 - And not very practical
 - But: Instrument bias..
 - Let's take a break from software and look at...

Ground Motion Detectors

- Mostly, two types
 - Hydrostatic Level Sensors: (HLS)
 - Measure vertical distances between a given equipotential line. differences (And this is what we want!)
 - Accuracy: fraction of 1 micron (V. Shiltsev claims 50 nm, but disputed, need to be settled..)
 - Frequencies: < one minute... (~ 0.01 Hz)
 - Seismic sensors & Geophone
 - Mostly, acceleratometers: Need to convert to change of position and Power Density Spectrum.. Calibration accurate to ?
 - Fast, > 0.01 Hz to tens of KHz..
- Others:
 - Frequency Scanned Laser Interferometers (FSLI)
 - Fiber Optic based Strain gauges...

Ground Motion & Vibration: A Gap?

- The range of 1.0 Hz to 0.01 Hz
 - from 5 to 500 ILC pulses: typical inverse time delay between successive tuning phases of sub-sections of the machine!.
 - Boundary between "fast" and "slow"
 - Accuracy required: few hundred nm.
 - Instrumentation: ?
 - Hydrostatic : too slow
 - Seisometers: -> calibration? systematic errors?
 - FSLI: 100 nm over a distance of ~ 1 m. But over ~ 100 m? And cost!

So, From Raw Data to LET models...

- Modeling is most likely needed:
 - Raw data from HLS could be used, in principle..
 - From limited system (~ 100 m.), If no spatial correlation is epected over such a distance scale.
 - Correction due to instrument resolution is small.
 - Mostly, we are using the model of A. Seryi, or similar.
 - Obtained by fitting the Power spectrum to the "P~/($\omega^2 k^2$), the "ATL" model

19

- With non-linear correction
- "Add-On: Cultural noise"

GM model... Limitations.

- ATL does not consistently handle:
 - Quasi-periodic motion
 - Tides are clearly visible in FNAL recent data.
 - Hydrology
 - Change in the Water table...ILC FNAL site is expected to be better than NuMI, yet, it will be a factor.
 - Other "systematic effects"

 $\Delta x^2 \sim \text{sqrt}(L)$

yet to be determined

GM models...Options

- Starting point:
 - ATL : Just one number.. easy!
 - ATL + corrections.. (A. Seryi, V. Ivanov)
 - Available in LIAR, Lucretia, CHEF
 - Other codes?
 - No attempt at correlation "Natural" and "Cultural", i.e. add deviations in quadrature.
- Upgrades:
 - Tides simulation
 - Review "cultural noises" and vibrations.
 - Better white noise? 100 nm -> few hundred nm?
 - Correlations across the ~0.1 Hz boundary
 - Benchmark different implementations.