

Status and Plans for RTML LET Studies at SLAC

Jeff Smith SLAC 23 October 2007

23 October 2007

Global Design Effort

The Past

- LET studies in RTML have not necessarily been too organized.
- Only looked at static alignment
- Each subsection on its own
- Have shown that different BBA methods effective in different regions.
 - Return Line
 - Kick minimization works well on its own.
 - Magnet/beam jitter may be a problem => feed-forward may fix this
 - Turnaround, spin rotator up to BC1
 - Kick minimization not good enough on its own must be augmented with dispersion bumps => prefer not have to rely on magic dispersion bumps
 - Coupling correction critical
 - Bunch compressor
 - Dispersion Free Steering shows much promise.
 - Pitched RF cavities most critical, especially in BC1

IIL

Global Design Effort

- Past studies on RDR lattice.
 Should be updated with changes to lattice
- Reinvestigate canonical misalignments
- Every study should have at least one independent verification
- Virtually no dynamic studies (i.e. ground motion, power supply jitter) have been studied
- SLAC will contribute to pre-defined work packages for EDR as preliminarily laid out in Work Package Document distributed earlier.

• Static Tuning 1

- Apply standard set of misalignments and errors (not necessarily realistic)
 - Perfect BPMs (infinite resolution and no scale error)
 - Phase and voltage errors? Maybe add these
- Simulate BBA and confirm <4 nm emittance growth is achievable at 90% confidence
- Whole RTML together using different methods for each section (if needed)
- If 4 nm is not achievable given standard misalignments, identify improvements needed to achieve budget.
 - Either tighter tolerances and/or better BBA
 - Best not to have to rely on magic bumps
 - They're our last line of defense and shouldn't need to use up our safety buffer.
- Deadline ~May 2008

- Work Package 2
 - As more accurate/better misalignment models develop incorporate them into simulations.
 - Include:
 - BPM scale and resolution errors.
 - Failure modes.
 - Failed BPMs, Corrector coils, maybe even failed quads and wire scanners
 - RF errors
 - phase and voltage
 - Possible failed dependencies:
 - WP relies on technical experts giving us accurate misalignment/ failure models
 - How do we update our canonical set of misalignments?
 - » i.e. what is the expected phase error for the RF?
 - Deadline ~November 2009

- Work Package 3
 - Re-examine error parameters developed during WP 2.
 - Make recommendations to Area Leaders on which realistic errors are unacceptable from an emittance preservation perspective.
 - I.e. An RF phase error of 2% may be found to be unacceptable, and a reduction to 1% may be necessary for acceptable emittance growth.
 - Deadline ~November 2009

• Work Package 4

- Dynamic Tuning
- Develop requirements for orbit feedback systems
- How many 5 Hz feedback loops and where to put them?
- What about intra-train feedback?
- Turnaround feed-forward
- Simulations should include:
 - ground motion
 - · component and power supply jitter
 - stray fields
 - DR extraction kicker jitter
- Cannot commit to this work at this time
 - May need more FTEs
 - Work on this WP should probably progress in parallel to other WPs

- Steve Molloy: Lucretia
 - MatLIAR used in the past so requires writing plenty of scripts/code
 - Good exercise for Steve!
 - But takes time...
- Jeff Smith: BMAD or Lucretia
 - Could continue with BMAD and help Cornell or switch to Lucretia and help Steve.
 - Decision pending.... (haven't done anything yet...)

IIL

- Not many results yet.
 - Steve just started working on implementing BBA in Lucretia.
 - Jeff admittedly hasn't done anything lately.
 - This will change!
 - Work will ramp up over the next couple months

IIL