ATF / ATF2 extraction beam phase space

Philip Bambade

on behalf of:

D.Angal-Kalinin, R.Appleby, J.Jones, T.Scarfe (CI, UK) M.Alabau (IFIC/LAL), A. Faus-Golfe (IFIC) G.White (SLAC/LAL), M.Woodley (SLAC), S.Kuroda (KEK) P.B., J.Brossard, G. Le Meur, Y.Rénier, C.Rimbault, F.Touze (LAL)

6th ATF2 project meeting @ Nanobeam 2008 May 26-30 May, 2008, BINP, Novosibirsk, Russia

ATF2 LAYOUT

- •ATF2 input match stability
- •Evidences for emittance growth and reliability
- •Phase-space measurements
- •Is there a main suspect ?
- •Improved automation and collaborative procedures
- •Improved instrumentation

ATF EXT line description & wire scanner position

Vertical emittance growth in ATF Extraction Line

Measured vertical emittances are higher than expected, and there is a dependence with the beam current.

2 - Multi-wire scanner emittance reconstruction method

No coupling between reference point and wire scanner position \rightarrow the following linear system is used to reconstruct the vertical projected emittance.

Emittance measurements using quadrupole and skew quadrupole scans

The measured beam sizes, σ^{M} , at MW1X are expressed as a parabolic function of the strength of QF5X, described by 3 fit parameters. Reconstructing those parameters make enable the twiss parameter determination at QF5X position, via the reconstruction of $\sigma_{11},\sigma_{12},\sigma_{22},\sigma_{33},\sigma_{34},\sigma_{44}.$

$$
\sigma_{11}^M = S_{11}^2 \sigma_{11}^{QF} + 2S_{11} S_{12} \sigma_{12}^{QF} + S_{12}^2 \sigma_{22}^{QF} + k (S_{11} \sigma_{11}^{QF} + S_{12} \sigma_{12}^{QF}) 2S_{12} + k^2 \sigma_{11}^{QF} S_{12}^2 \Leftrightarrow A_x (k - B_x)^2 + C_x
$$

\n
$$
\sigma_{33}^M = S_{33}^2 \sigma_{33}^{QF} + 2S_{33} S_{34} \sigma_{34}^{QF} + S_{34}^2 \sigma_{44}^{QF} + k (S_{33} \sigma_{33}^{QF} + S_{34} \sigma_{34}^{QF}) 2S_{34} + k^2 \sigma_{33}^{QF} S_{34}^2 \Leftrightarrow A_y (k - B_y)^2 + C_y
$$

$$
\begin{bmatrix}\n\sigma_{11}^{Q} = \frac{A_{x}}{S_{12}^{2}} \\
\sigma_{22}^{Q} = \frac{1}{S_{12}^{2}} (A_{x} B_{x}^{2} + 2 \frac{S_{11}}{S_{12}} A_{x} B_{x} + \frac{S_{11}^{2}}{S_{12}^{2}} A_{x} + C_{x}) \\
\sigma_{12}^{Q} = -\frac{A_{x}}{S_{12}^{2}} (B_{x} + \frac{S_{11}}{S_{12}})\n\end{bmatrix}\n\Rightarrow \mathcal{E}_{x} = \sqrt{\sigma_{11}^{Q} \sigma_{22}^{Q} - \sigma_{12}^{Q}} = \sqrt{\frac{A_{x} C_{x}}{S_{12}^{4}}}
$$
\nAnd the same for $\sigma_{33} \sigma_{34} \sigma_{44} \rightarrow \epsilon_{y}$

Emittance measurements using quadrupole and skew quadrupole scans

The measured beam sizes, σ^{M} , at MW1X are expressed as a parabolic function of the strength of QK1X, described by 3 fit parameters. If no coupling, the parabola is centered at zero.

$$
\sigma_{11}^M = S_{11}^2 \sigma_{11}^{QK} + 2S_{11} S_{12} \sigma_{12}^{QK} + S_{12}^2 \sigma_{22}^{QK} + k (S_{11} \sigma_{13}^{QK} + S_{12} \sigma_{23}^{QK}) 2S_{12} + k^2 \sigma_{33}^{QK} S_{12}^2 \Leftrightarrow D_x (k - E_x)^2 + F_x
$$

\n
$$
\sigma_{33}^M = S_{33}^2 \sigma_{33}^{QK} + 2S_{33} S_{34} \sigma_{34}^{QK} + S_{34}^2 \sigma_{44}^{QK} + k (S_{33} \sigma_{13}^{QK} + S_{34} \sigma_{14}^{QK}) 2S_{34} + k^2 \sigma_{11}^{QK} S_{34}^2 \Leftrightarrow D_y (k - E_y)^2 + F_y
$$

$$
D_x = S_{12}^2 \sigma_{33}^{QK}
$$

\n
$$
D_y = S_{34}^2 \sigma_{11}^{QK}
$$

\n
$$
-D_x E_x = S_{12} (S_{11} \sigma_{13}^{QK} + S_{12} \sigma_{23}^{QK})
$$

\n
$$
D_y E_y = S_{34} (S_{33} \sigma_{13}^{QK} + S_{34} \sigma_{14}^{QK})
$$

\n
$$
D_x E_x^2 + F = S_{11}^2 \sigma_{11}^{QK} + 2S_{11} S_{12} \sigma_{12}^{QK} + S_{12}^2 \sigma_{22}^{QK}
$$

\n
$$
D_y E_y^2 + F = S_{33}^2 \sigma_{33}^{QK} + 2S_{34} S_{33} \sigma_{34}^{QK} + S_{34}^2 \sigma_{44}^{QK}
$$

 $\sigma_{11}, \sigma_{12}, \sigma_{22}, \sigma_{33}, \sigma_{34}, \sigma_{44}$ at QK1X can be deduced from previous step, knowing the R matrix (QF5X + drift). To determine coupling elements $\sigma_{13},$ $\sigma_{23},$ σ_{14} one needs measurements at 2 wires scanners.

Twiss parameters From QD8 scan

βy=41+/-9 m αy=-10+/-3

36 $s(m)$

36

 $βy=41+/3 m$ ^αy=-10+/-1

4.7-Search for uniqueness of coupling mimics

With Skew set at QM7 @3A (0.01547m-1)and vertical emittance @51 pm.rad. With Skew set at BS3X @1.8A (0.00928m-1) and vertical emittance @51 pm.rad.

Problem: can't achieve to reproduce measurement with MAD simulation

Skew quad scans show coupling. Try to reproduce all quad measurements with MAD introducing sources of coupling in ExtLine. For the moment, a unique source at QM7 can not explain what we observe. Still under investigation....

Extraction line vertical emittance growth ?

 \rightarrow Could magnets shared with damping ring be the cause of the effect?

(Results from 200

 $2.5 10^{10}$

 110^{10} 1.510^{10}

 510^9

 $\bf{0}$

Emittance growth studies using static bumps in the ATF EXT line

Tracking simulations in the Extraction Line

- With bumps created with ZV9R and ZV100R
- Including non-linearity in QM7
- For different input emittances

Considering 0.5 mm bump:

- with nominal input emittances, beam size increase in OTR is a factor $~1.8$

-with $\varepsilon_{\rm v}$ 4 times nominal, beam size increase in OTR is a factor \sim 1.2 as in the measurements

QM7 2D field calculation with PRIAM

FIG. $5 - QM7B$ field lines

FIG. 6 - QM7 Bx at y cst

FIG. $7 - QM7$ By at y cst

EXT BPM Response to QM7R Vertical Bump

Conclusions and prospects

- •ATF EXT projected vertical emittance consistently measured ~ 3 times DR values at 5 1010 e[.]/bunch
- • Quad scans more precise than multi-wire technique to measure projected X and Y emittances & Twiss parameters, due to small betatron phase separation between wire scanners in present EXT line – the latter should improve in new ATF2 EXT line thanks to better optical design.
- • Identified reason for vertical projected emittance growth : QM7 DR quad, traversed off-axis by EXT beam, can induce x-y coupling through the sextupole field component in the presence of a vertical offset. However modeling and beam size measurements at downstream OTR suggests it cannot be sole explanation. Spurious η_{y} at OTR leaking out from DR must also be controlled not to mask effects.
- • Full 4D beam matrix measurements required to determine linear coupling source(s) & correction. Set of normal and skew quad scans are investigated, combining X, Y and 10° wire measurements \rightarrow may be more precise & reliable than traditional multi-wire 4D technique in which $\langle xy \rangle$ determination suffers from unfavorable error propagation.
- • Significant phase-space variations are found at EXT input on successive shifts : \rightarrow time-consuming pre-tuning needed before any sensible investigations in EXT line are performed, \rightarrow need to optimize shift planning in this respect + work on reproducibility of DR optical tuning.
- \bullet Reliable control of apparent vertical emittance growth from x-y coupling in ATF2 EXT line will require precise Twiss parameter, dispersion & trajectory control on time-scale of typically 1 shift, in addition to x-y coupling correction ability further downstream.
- •Automation of procedures essential for speed & reliability \rightarrow develop all tools in "Flight Simulator".
- •More efficient collaborative multi-partner / site team work \rightarrow better defined procedures and information flow during and after shifts, with improved sharing of data & algorithms : check-lists and measurement programs, common data areas, on-call experts for specialist topics & questions, standardized scheme to upload e-log book & shift reports, respectively during and after shifts.
- •Dedicated instrumentation \rightarrow investigate adding 2D profile measurements based on OTR stations near each wire-scanners in ATF2 EXT line, for multiple & fast <xx>, <yy> and <xy> measurements.