

Techniques to approach the requirements of CLIC stability

K. Artoos, O. Capatina (speaker), M. Guinchard, C. Hauviller, F. Lackner, H. Schmickler, D. Schulte (via Webex)
CERN, Geneva, Switzerland

Overview

- CLIC general description
- General stabilization requirements
- Techniques for mechanical stabilization
- CLIC stabilization team
- Work plan
- Conclusion

CLIC (Compact Linear Collider) complex

(new parameters)

Longitudinal section of a laser straight Linear Collider on CERN site

CLIC module

CLIC TUNNEL CROSS-SECTION

3 TeV CLIC Luminosity:

 $L = 5.9 * 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

$$L = \frac{A}{\sigma_x \sigma_y}$$

Linear collider

- A large number of luminosity loss sources exist
 - Need to allocate a budget for each of them
- Current luminosity loss allocated for magnet jiter:
 - 1% for main linac magnets
 - 1% for BDS magnets, except final doublet magnets
 - 1% for final doublet magnet
- These are a large fraction of the overall luminosity loss

- Some CLIC overall parameters
 - Center of mass energy 3 TeV
 - Main linac RF frequency 12 GHz
 - Linac repetition rate 50 Hz

- Overview of the global alignment / stabilization strategy for main linac magnets
 - "Steady state" procedure:

• But, before "Steady state", alignment has to be carried out

- Overview of the global alignment / stabilization strategy for main linac magnets
 - Once / year:

- $\label{eq:Beam of F} \begin{cases} 1. & \text{Mechanical pre-alignment } => 0.1 \text{ mm} \\ 2. & \text{Active pre-alignment using HLS, WPS, RASNIK} => +/- 10 \, \mu\text{m} \\ & \text{on a sliding window of 200 m} \end{cases}$
- $\begin{array}{c} \text{3. Beam based active alignment with movers complex} \\ \text{procedure => 1 } \mu\text{m} \\ \text{4. Beam based alignment with magnet correctors => few nm} \end{array}$

 - Once / few weeks
 - Repeat 2. + 3. + 4.
 - Once / couple of hours
 - Repeat 3. + 4. but "simplified" procedure
 - "Steady state" procedure presented before

- Overview of the global alignment / stabilization strategy for main linac magnets
 - "Steady state" procedure:

Numerical simulation:
 Ratio of the Beam based feedback On / feedback Off for the amplitude of the beam jitter at Interaction Point as a function of frequency

 The frequency at the limit between beam based feedback and mechanical stabilization is not very strict!

Mechanical stabilization requirements:
 Quadrupole magnetic axis vibration tolerances:

	Final Focusing Quadrupoles	Main beam quadrupoles
Vertical	0.1 nm > 4 Hz	1 nm > 1 Hz
Horizontal	5 nm > 4 Hz	5 nm > 1 Hz

- Main beam quadrupoles to be mechanically stabilized:
 - A total of about 4000 main beam quadrupoles
 - Of 4 types
 - Magnetic length from 350 mm to 1850 mm
- Mechanical stabilization might be On at some quads and Off for some others

Environmental vibration levels – orders of magnitude, CERN site

Techniques for mechanical stabilization

Structural control problem that needs an integrated approach

Output measurement

How to measure vibrations/ dynamic displacements with amplitudes of 0.1 nm?

• Seismometers (geophones)

Velocity

Accelerometers (seismic - piezo)

Acceleration

Streckeisen STS2 x,y,z

Guralp CMG 3T x,y,z

Guralp CMG 40T

Eentec SP500

PCB 393B31 z

		, ,	electrochemical	
2*750Vs/m	2*750Vs/m	2*800Vs/m	2000Vs/m	1.02Vs ² /m
120 s -50 Hz	360s -50 Hz	30 s -50 Hz	60 s -70 Hz	10 s -300 Hz
13 kg	13.5 kg	7.5 kg	0.750 kg	0.635 kg
23 kCHF	19 kCHF	8 kCHF		1.7 kCHF

Vibrometer et interferometer

Déplacement

Output measurement

Characterization for low intensity signals:

Sensitivity + resolution

Cross axis sensitivity,

Noise level, « self noise » measurement (ex. blocking the seismic mass or by coherence)

Signal processing: Resolution, filtering, window, FFT, DSP, integration, coherence >>

Can give values < sensor resolution

Characterization of measurement method, fix a standard

Techniques for mechanical stabilization

Structural control problem that needs an integrated approach

Disturbance sources

1. Ground vibration

Remark: Measurement interpretation may depend on Signal processing!

Signal temporer emedistre dans CLEA perioant 25mm avec to systeme CERN Comparison of the RMS displacement of ground motion in the CLEX Building

Disturbance sources

2. <u>Direct forces on magnet</u>

- Mechanical coupling via beam pipe, cooling pipe, instrumentation cables,...
- Vibrations inside the structure to be stabilized:
 - ➤ Cooling water circuit
 - ➤ Active alignment with stepper motors

Disturbance sources

3. Acoustic noise

Acoustic noise = air pressure waives Acoustic noise as dominant source de vibration > 50 Hz

See next presentation by B.Bolzon

For high frequencies > 300 Hz, movements > tolerances may be induced

Techniques for mechanical stabilization

Structural control problem that needs an integrated approach

"Plant" characterization / optimization

Vibrations « Transmissibility »

$$\frac{Xp}{Xe} = \sqrt{\frac{1 + \left(\frac{\omega}{Q\omega_0}\right)^2}{\left(1 - \frac{\omega^2}{{\omega_0}^2}\right)^2 + \left(\frac{\omega}{Q\omega_0}\right)^2}}$$

$$\omega_0 = \sqrt{\frac{k}{M}}$$
Natural frequency

Damping ratio

$$\xi = 1/2Q$$

$$\frac{x_p}{F_N} = \frac{Q}{M\sqrt{Q^2(\omega_0^2 - \omega^2) + (\omega\omega_0)^2}}$$

"Plant" characterization / optimization

Real system:

Multi degrees of freedom and several deformation modes with different structural damping

Experimental modal analysis on CLEX girder

Z X

Amplification of floor movement

O. Capatina et al., Novosibirsk, 27th of May 2008

Techniques for mechanical stabilization

Structural control problem that needs an integrated approach

Control input

Actuators with 0.1 nm resolution?

Resolution, movement reproducibility?

Friction

Guiding systems with friction

Real resolution 1 µm (0.1 µm)

Solution: Piezo actuators PZT

- + flexural guides
- + feedback capacitive sensor

0.1 nm 100 N Calibration bench flexural guides

Techniques for mechanical stabilization

Stabilized structures and Piezo actuators with resolution of 0.05 nm exist!

Fernandez Lab, Columbia University NY

Traction test on a protein

But only for few kg and rigid objects....

Techniques to be developed for heavier and larger structures

Techniques for mechanical stabilization

- Accelerator environment has to be taken into account
- In particular radiation effects have to be considered
 - Radiation level at CLIC not yet estimated
 - Radiation damage effects on electronics:
 - Total dose
 - Single event error
 - Experience with other CERN projects have shown Single event error can produce important failures

Radiation issues

 Expected single event error rate in the various underground regions for a nominal year of LHC operation

LHC Baseline design

Radiation issues

And for CNGS

CNGS baseline design

Radiation issues

After just 2 days of operation in late 2007, Single Event Error failures
occurred in two out of three of CNGS zones, at rates one or two
orders of magnitude less than expected

CNGS failures

CLIC stabilization team

- Extensive work done between 2001 and 2003 concerning CLIC stabilization
- From 2004 to 2007:
 - Work continued only at Lapp Annecy, France
 - At CERN beam dynamic studies, update of stabilization requirements by Daniel Schulte
- Collaboration between several Institutes started in 2008

Regular face-to-face meetings

Work plan

- Present goal for CLIC:
 - Demonstrate all key feasibility issues and document in a Conceptual Design Report by 2010

CLIC stabilization feasibility to be demonstrated by 2010

Actions:

- Characterize vibrations/noise sources in an accelerator and detectors
 - Summary of what has been done up to now
 - CLIC Stabilization Website: http://clic-stability.web.cern.ch/clic-stability/
 - Additional correlation measurements to be done at LHC interaction regions for distances from several m up to 1000 m
 - Continue measurements in CLEX environment at different installation phases

Work plan

Actions:

- Overall design
 - Linac
 - Compatibility of linac supporting system with stabilization (including mechanical design)
 - Design of quadrupole (we have to stabilize the magnetic axis) and build a mock-up with all mechanical characteristics
 - Final focus
 - Integration of all the final focus features: types of supporting structures, coupling with detector

Sensors

- Qualification with respect to EMC and radiation
- Calibrate by comparison. Use of interferometer to calibrate other sensors. Create a reference test set-up

Work plan

Actions:

- Feedback
 - Develop methodology to tackle with multi degrees of freedom (large frequency range, multi-elements)
 - Apply software to various combinations of sensors/actuators and improve resolution (noise level)
- Overall system analysis
 - Stability, bandwidth,...
 - Sensitivity to relaxed specifications
- Integrate and apply to linac
 - A mock-up should be ready to provide results by June 2010 with several types of sensors including interferometers
 - Mock-up to be integrated in accelerator environment Where?

Conclusion

MONALISA IRFU/SIS STANFORD LINEAR ACCELERATOR CENTER

Collaboration:

- Demonstrate stability of 0.1 nm > 4 Hz for final doublets
- Demonstrate stability of 1 nm > 1 Hz for main beam quadrupoles
 With a realistic system, in an accelerator environment, to be checked using 2 different methods
- An integrated approach: stabilization elements to be taken into account at the design phase of CLIC composants, ground motion characterization, sensors, actuators, alignment compatibility with beam dynamics
- See next presentations in this workshop:
- "Study Of Vibrations And Stabilization At The Sub-Nanometre Scale For CLIC Final Doublets" by Benoit BOLZON (LAPP)
 - "Monalisa status" (via Webex) by David Urner (University of Oxford)