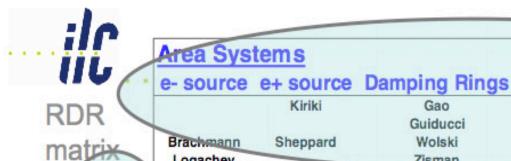


Cost Management Report

John Carwardine 5 June, 2008


Outline

- RDR status
- Cost Management Group
- Traceability
- Cost reduction strategies, examples
- TDR Planning

TD Phase challenges & issues

- RDR Now one year old
 - Legacy design effort
 - CRITICAL: maintain and document traceability of value estimate, bases of estimates, and RDR design
 - Every day more is 'forgotten'
- TD Phase extended to 2012; resources are significantly reduced.
- CRITICAL: demonstrate clear effort to reduce the cost
 - Begin to identify possible cost reductions
 - "Minimal" 200-500 GeV Collider Concept
- Plan for critical reviews: internally in 2010, publically in 2012

Guiducci Wolski Logachev Zisman

Gao ES Kim Yamamoto Hayano Angal-Kalipin Lilje Gervi Tenenbaum Adolphsen Coiyak

RTML

Technical Systems

Controls

CFAS

Cryogenics

Installation

Vacuum systems Suetsugu Noonan Michelato Magnet systems Sugahara Bondachuk **Thomkins** Cryomodule Ohuchi Pagani Carter Cavity Package Saito Proch Mammossei RF Power Fukuda Larren Instrumentation Urakawa Rurre Ross Dumps/Collimators Ban Densham Markiewicz Acc. Physics Kubo Schulte Global Systems Ops. & Avail.

Teranuma

Michizono

Hosoyama

Enomoto

Shidara

Elsen

Simrock

Tavian

Baldy

Bialwons

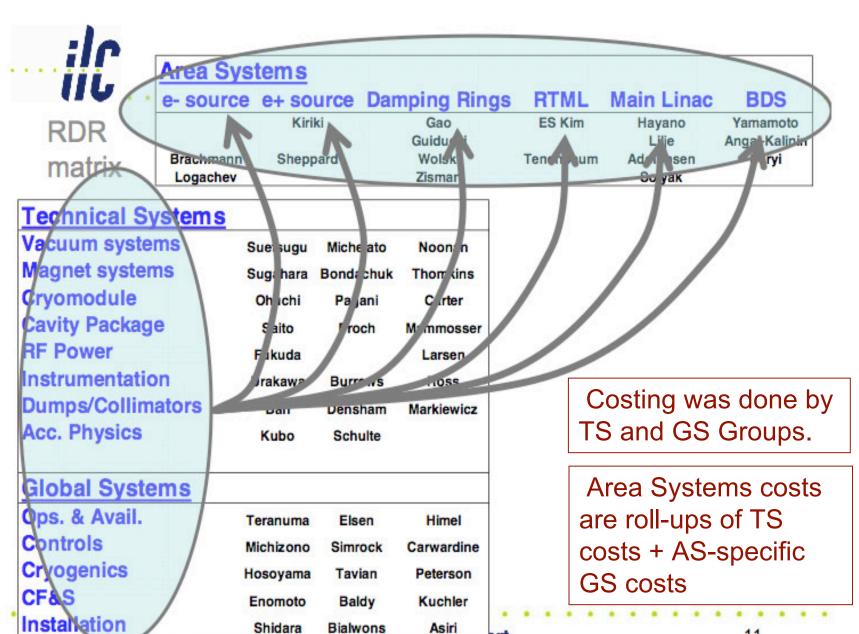
Himel

Carwardine

Peterson

Kuchler

Asiri


GIODAI DESIGII EIIORT

Technical requirements & specifications

Main Linac

BDS

From Valencia meeting

GIODAI DESIGII EIIOR

From Valencia meeting

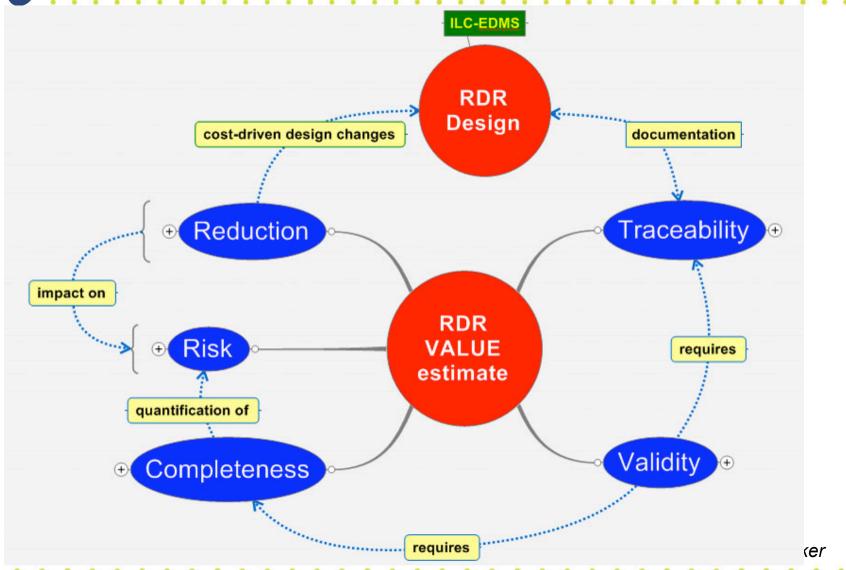
ilr III

Legacy RDR cost information

- Types of information
 - Spreadsheets
 - Emails
 - Presentations
 - Electronic documents (word, pdf, etc)
- Formats
 - No consistent format for information
 - Different levels and types of information
 - Data is organized differently
- Impact
 - Difficult to roll up data for comparison and analysis
 - Difficult to recreate a consistent costing drill-down

Archeology..

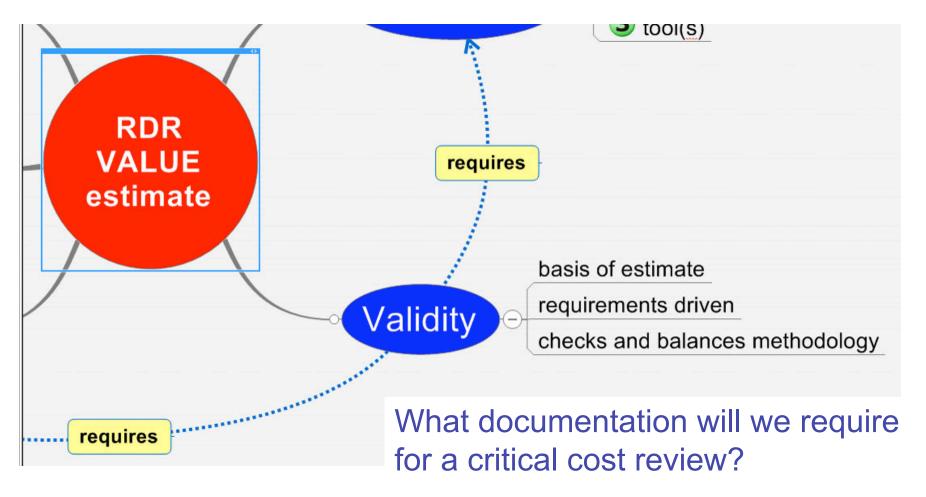
- In detail, what is the design that was costed…?
- What items were costed, how are the costs organized (eg WBS, CBS)...?
- What design criteria were used and where did they come from...?
 - Internally derived
 - External parameters/requirements
 - Constraints
- Is there documentation to support the above?
- Trace the requirements to their source...
 - Requirements provided, internal best guesses,...
 - Conversion from 'requirement' to engineering design
- Consolidate/generate documentation to show the traceability



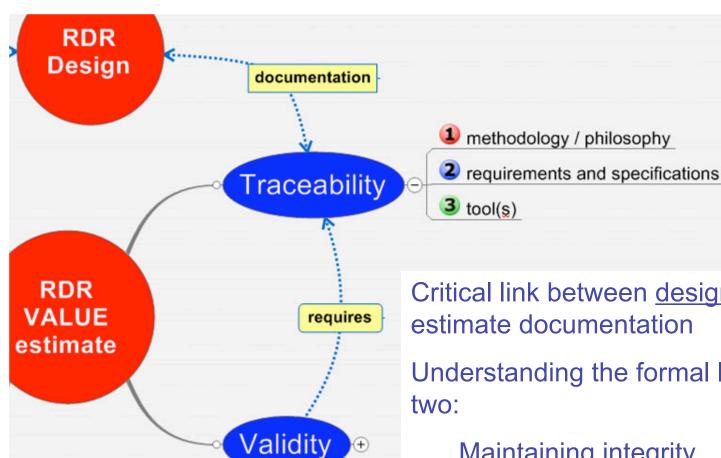
Formation of Cost Management Group

- Re-establish traceability with RDR design requirements, identify missing information (coordinate with technical groups)
- Re-structure and consolidate existing cost information for "better access"
- Examine the cost data for inconsistencies, discrepancies, questionable entries, missing information
- Develop cost-reduction design scenarios
- Push-back on the design (cost awareness)
- Prepare for critical design and cost reviews (2010, 2012)

Defining our (CMG) Goals

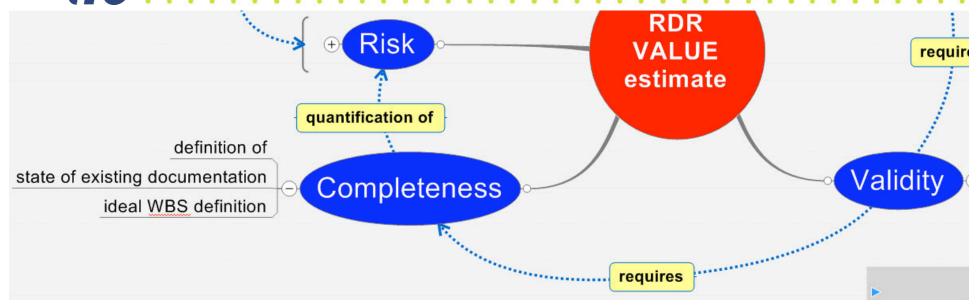


Defining our (CMG) Goals


Elements: VALIDITY

How do we intend to present it?

Elements: TRACEABILITY


Critical link between design and costestimate documentation

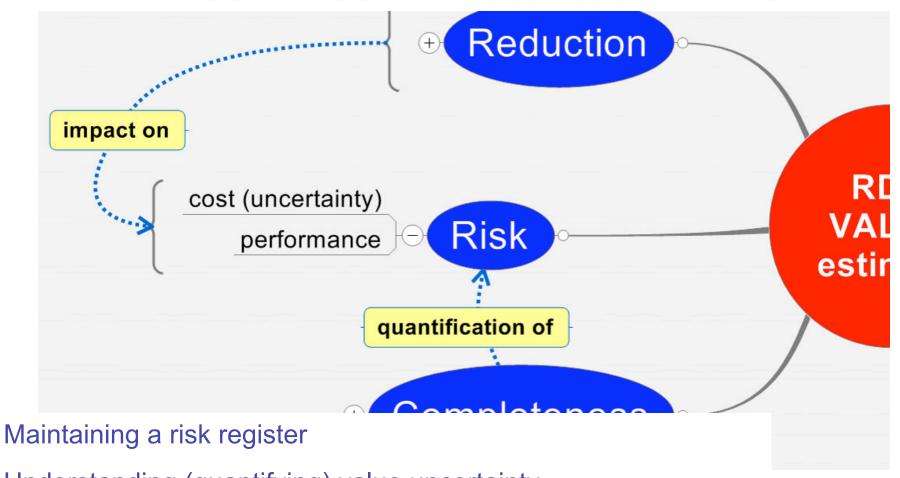
Understanding the formal link between the

Maintaining integrity Role of change control (→ Toge) Initial configuration (consolidating RDR)

Elements: COMPLETENESS

Definition of (i.e. level of detail) must be defined up-front

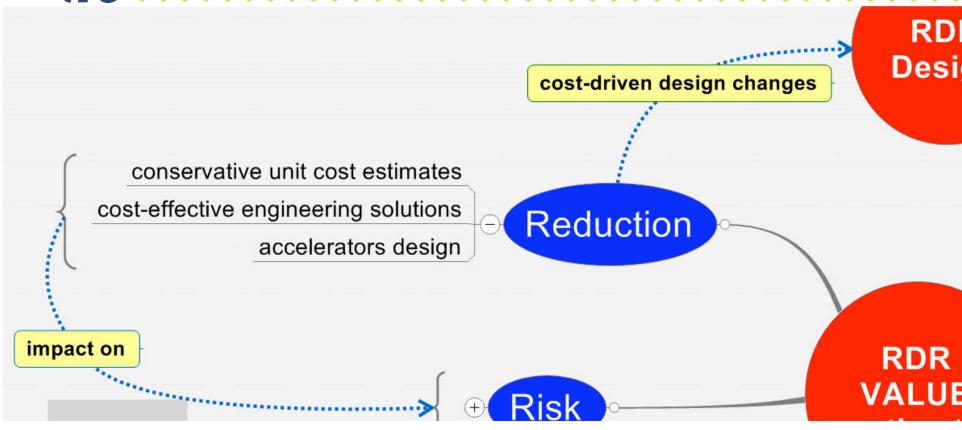
Use RDR value estimate as a guideline (e.g. 1% level)


Build 'ideal' CBS structure (based on above)

Understand how current information maps to ideal structure

Where is information missing What to do with too-detailed information

Elements: RISK

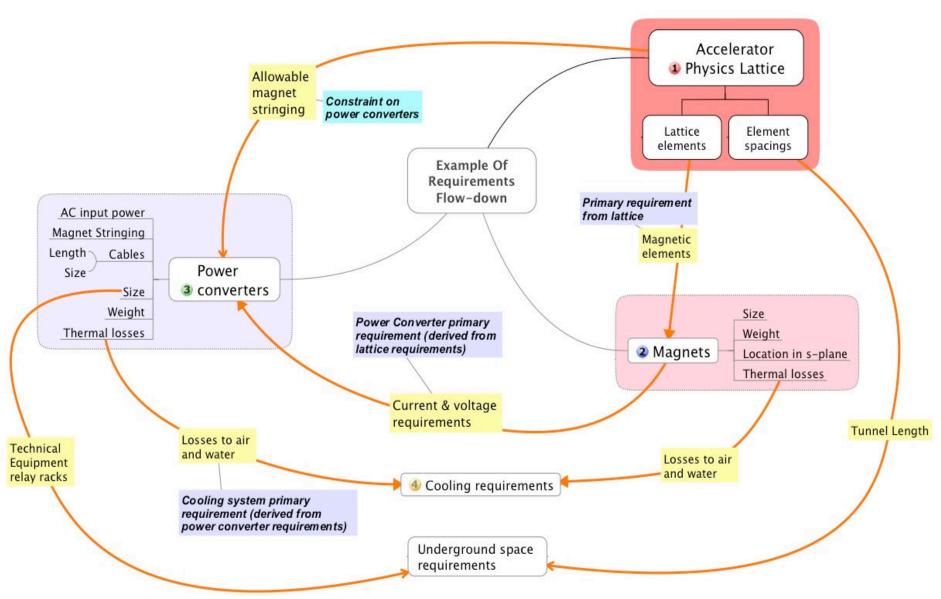


Understanding (quantifying) value uncertainty

Formally integrating methodology into scheme (tools)

Cost Reduction

"First step to containing / reducing cost is to keep good track of the existing ones" — anon.



First CMG meeting (5-8 May)

- Begin to review details of RDR cost estimate
 - Accelerator Areas: Positron Source
 - Technical Systems: Magnet Systems, HLRF
 - Conventional facilities: cooling, underground volume
- System-level design and cost optimizations
 - Eg, do detailed requirements make sense: impact of push-back
- TDR Planning: how to manage costing information during TDR
- Begin to develop cost reduction strategies, review examples
 - Technical systems, conventional facilities
 - Staging: implement full machine performance incrementally
 - Possible cost-favorable accelerator design changes

How well can we trace requirements...?

Idealized Requirements model (Technical System "world view")

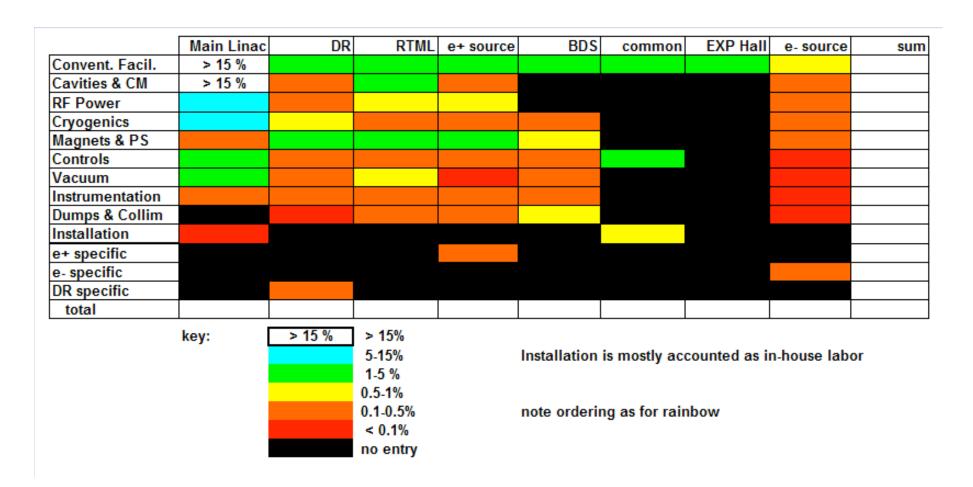
- Inputs to the Technical System (TS)
 - Primary requirements of the TS
 - Constraints on the TS
 - Dependencies

Requirements from other groups Decided / guessed by TS Group Implicitly assumed by TS Group

- Internal
 - Engineering requirements derived from external requirements & constraints
 - Internal requirements & constraints

- Outputs from the Technical System
 - Derivative requirements to other TSs
 - Constraints applied to other systems

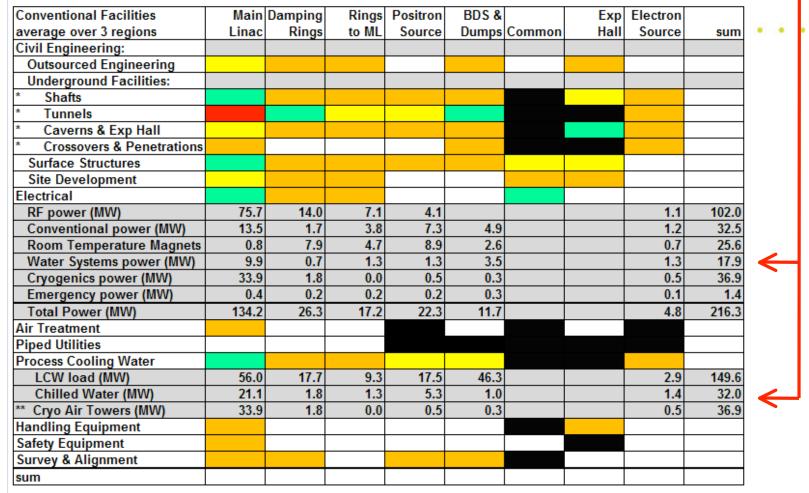
Requirements given to other groups Implicitly assumed



At 6.7B, the machine is too expensive

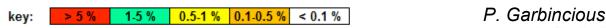
We must show clear efforts to re-assess the design and reduce the cost

Where might we find cost reductions?



Focus on Conventional Facilities

- Significant fraction of overall cost
 - Tunnels, caverns, shafts
 - Services: cooling, electrical utilities
- Assess requirements and costs
 - Was CFS given "reasonable" requirements...?
 - Can we push back, eg cooling delta-T…?
 - (Technical groups designed systems to meet the requirements they were given)



CF breakdown + electrical & cooling loads

^{*} scaling underground facilities components: UF(i,j) = UFavg(i)*UFamericas(i,j)/ΣUFamericas(i,k)

^{**} cooling systems are included in cost of cryogenics plants

i = ML, DR, RTML, e+ source, BDS, common, Exp Hall, e- source

j = shafts, tunnels, caverns & halls, crossovers & penetrations

Exploring cooling water cost reductions

Main Linac Water Cooling

Strategy -

RDR criteria tables; RDR design and estimate are <u>useful</u> input Detailed design resources very limited

Cost optimum will be developed using parametric approach

Technical

Must <u>reject</u> 'commercial off-the-shelf' specifications where/if cost effective

Process

Who and how

Data – provided by CFS (Emil and DESY/XFEL)
Plans

CMG DESY 05 May 2008 M. Ross ILC - GDE

Needed to better assess

- Impact on technical systems
- More thorough evaluation of technical design and costs

Cost reduction proposals

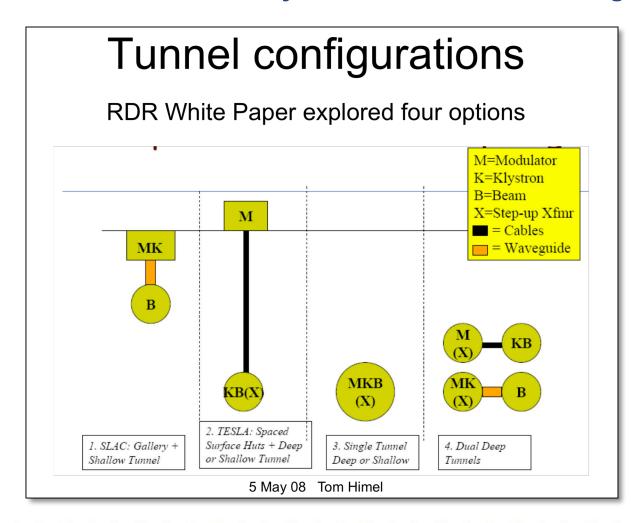
- Increase delta T
- Increase tunnel air temperature
- Several design changes

Scaling of Process Water Costs (cont'd)

- Cost Reduction Example
 - Assuming Piping is half of the cost and the
 - Cost Scaling Factor is α = 0.8

$$\frac{K'}{K} = \frac{1}{2} \left(\frac{\Delta \vartheta}{\Delta \vartheta'} \right)^{2\alpha/5} + \frac{1}{2} \left(\frac{\Delta \vartheta}{\Delta \vartheta'} \right)^{\alpha}$$

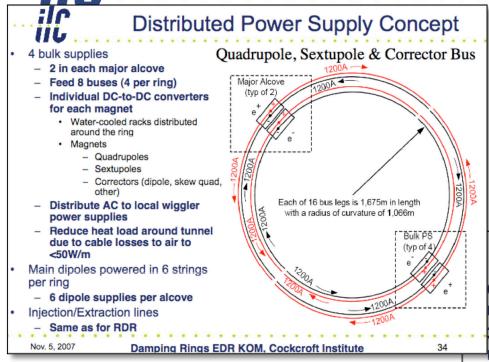
 Then the Cost are reduced to 50 % if the Temperature Rise is increased by a factor of four.


DESY, May 5, 2008 GDF : Cost Meeting **Global Design Effort**

2

Exploring one vs two tunnels

A subject of much debate during the RDR phase

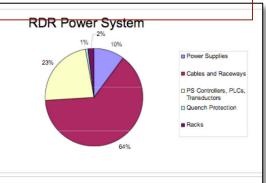


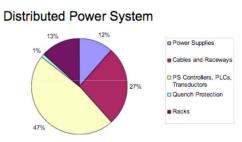
Considerations

- Cost savings
- Life safety, egress, etc
- Thermal loads
- Equipment access
- Radiation damage
- Machine availability
- Operations model

Exploring magnet systems cost savings

Distributed raw DC


- Magnet cables > 50% of DC magnet systems costs
- Distributing raw dc saves
 35% of RDR costs


Cable costs greatly reduced! 35% cost savings relative to RDR

Cost Impact

- Controls-related hardware now dominant cost
 - Some obvious further work to reduce costs in this area

Damping Rings

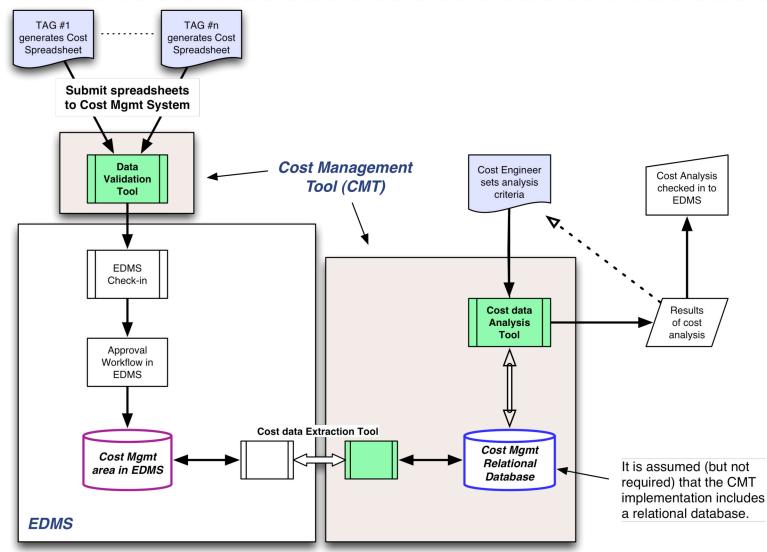
Candidate cost reductions

- Increase magnet voltage: reduce cooling requirements
- Distribute raw dc: reduce cable costs
- Remove redundant systems

Global Design Effort

Nov. 5, 2007

- Cost Management Group can only go so far...
 - Develop, rank initial proposals
 - Technical Groups do the detailed assessments.
- Must understand cost derivatives, be able to evaluate different design options, trade studies
- Technical Groups are best placed to develop proposals for cost reduction



Organizing information for the TDR cost estimate

- All costs must be traceable to their source and to a basis of estimate
- All costs must be traceable to the technical design.
- Documentation must be better formalized and more consistent in format and content
- Use spreadsheets for data entry
- Data <u>must</u> be entered in a consistent format that will be defined by PMO.
- Existing RDR cost data
 - Migrate existing cost data to the new format.

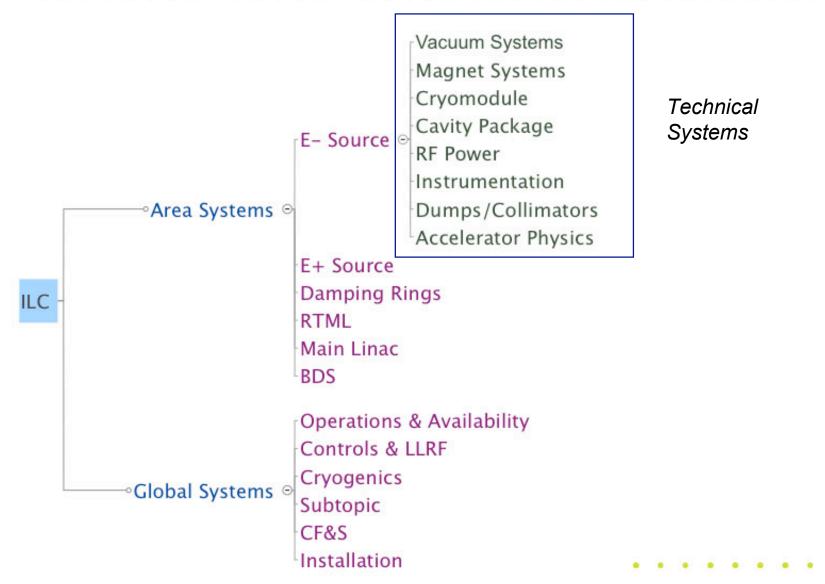
Model for cost analysis tool

Data analysis 'use cases'

There are many ways to look at the data

- Generate a cost-report of all Magnets, grouped by magnet type.
- Generate a cost-report of all Magnets, grouped by accelerator area.
- Generate a cost-report of the Damping Ring, grouped by technical system, area sub systems
- Generate a cost-report of all EDIA costs. Show the fraction of total items that does not have EDIA costs
- Escalate costs for inflation, handle exchange rates
- Trade off outside vs in-house labor
- Generate a report showing which engineer costed each item
- ...more

Possible template for cost data


butes				
Attribute Name	Value			
Item name (short)	CM 8C10			
key = identifier (# or ?)	CHOCIQ			
primary tag #0		-		
description	1 3 GHz Cryom	odule with	R cavities and	1 magnet nackage
cost est in K of currency	1.3 GHz Cryomodule with 8 cavities and 1 magnet package abcd.e			
currency	dollars			
unit of estimate	each			
vear of est	2007			
confidentiality class 1-5	3			
inflation category	other			
region of estimate	Europe			
estimate provided by:	Bialowons			
institutional labor (hours)	584			
Estimate reference	https://www-ilcde		EDMS/Crypodul	oEctimato ylc
uncertainty shape	triangular	 	LDM3/Cryoddur	ecstillate.xis
lower parameter %	-0.1			
	0.2			
upper parameter %		-		
uncertainty reference date entered	Bialowons	-	-	
	29-May-08	-		
entered by who	Garbincius			
comments	includes pro-rated testing facility			
Serial_Number	99345 Linac.Cryomodule.Magnet			
Part_Tag	Linac.Cryomoau	iie.Magnet		
hical Parameter List				
Parameter	Value	Units		
Length	100			
Gap		cm		
Nominal Field Strength		Tesla		
Nominal Current	100	Α		
ts List				
Part_Serial_Number	Part Short Na	ame		
	1 4.7 1_5.7.0.7 1_774			
ument List				
	Dog Dogeriet			
EDMS_Document_ID	Doc_Descripti	υπ		

Consistent and sufficient information is critical to allow cost analysis and to cost / design drill-down

Need more formalism for TDR: cost and design, requirements, cost information, bases of estimates, documentation

Implied RDR Parts Breakdown Structure from RDR Phase

Which "...Breakdown Structure" for TDR Phase?

- Work Breakdown Structure
- Parts Breakdown Structure
- Cost Breakdown Structure
- Must have consistency across the limbs in order to do analysis.
- How many elements…?
 - Difficult to manage more than a few 100...

Summary

- The RDR design is sound
- Must not lose "corporate memory" of RDR design, cost estimates, bases of estimates.
- Plan for critical technical and cost reviews
- Must reduce the cost of the machine
- Cost Management Group will steward the process ...strong collaboration with Technical Groups