LHC experience with installation

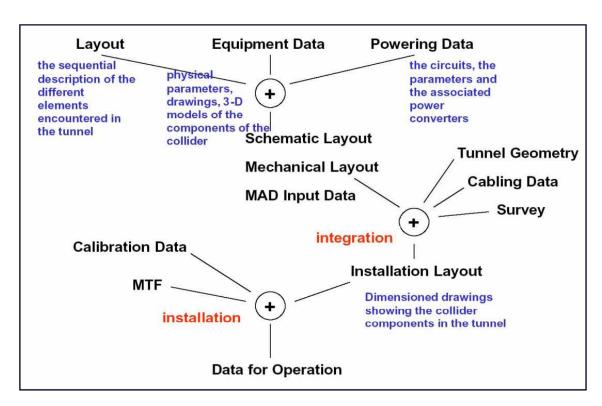
Katy Foraz

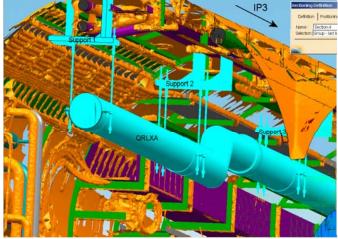
QAP

History

Lessons learned

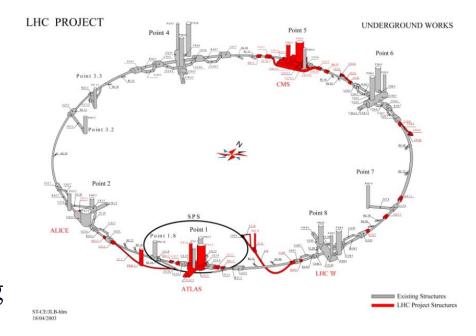
QAP


- Quality Assurance Plan
 - Based on ISO 9000 (documents distributed to all project engineers, contains all the code definitions, procedures) EDMS
 - Engineering Specifications: functional and interface specifications and design files
 - Engineering Change Request
 - Engineering Drawings
 - Technical Description for Market Survey
 - Technical Specifications
- Manufacturing tool management
 - > to follow the prod. & inst. activities:
 - Components traceability,
 - follow-up of non conformity
 - Step sequence of a process.



QAP

• Unique Reference database:



History

• 5 main phases

- Civil engineering
- General services
- Cryogenics
- Machine
- Hardware commissioning

Civil engineering phase

Scope

- Surface buildings
- Underground:
 - 2 injection tunnels ~5km
 - 2 beam dump tunnels
 - 2 new experimental areas
 - Other tunnel modifications: RR..

240'000 cubic meters

4 main contracts

मिलान निर्मान निर्मान

Civil engineering phase

Main problems encountered

- From CE side
 - Modification of scope while contracts were signed
 - ➤ New buildings
 - ➤ Modification of design
 - Introduction of 35h law in France
 - → Impact on contractors planning and resourcing...
 - Discussions with contractors
 - → Target cost mechanism
 - Some geological problems :
 - PM54,
 - Water leaks in UD68 and sector 34
- From coordination side
 - Lots of dust
 - Endless ends

General services Phase

Electrical general services and cabling

- More than 4'500km of cables
- 2 Industrial Services Contracts
 - Benefit: Fast intervention possible
 - Disadvantage: limited resources
- Main problems encountered:
 - For EL
 - At the beginning: integration not fully done
 - Late request from users
 - Availability of cables (other contracts...), and otl
 - From coordination side
 - Lots of delay Endless ends

General services Phase

Optical fibers

- Skilled contractor and very good contract follow-up – Easy coordination
- Could we have replace some of the control cables by optical fibers?

Water cooled cables

- Supply contract
- Hard time for planning
- Technical problems..... "Fire brigade"

General services Phase

Cooling and ventilation

Scope:

- Piping: more than 160 km of pipes,
 - ~ 8km of flexible

- Lots of work in surface buildings and experimental areas
- New Cooling and ventilation systems in alcoves (UA, RR), modification in surface (upgrade, controls...)

- Technical or and commercial

Cryogenic phase

Cryo Islands

- Upgrade or new installation
- > « stand-alone » Works

- Started in June 03
- After few months: Serious technical and quality problems
- Worksites stopped in July 04, CERN repaired and re-installed all the faulty elements already at CERN
- Started again in November 04
- Finished in December 06

Cryogenic phase

Impacts induced by QRL delays

- Technical: Skip systematical cold tests on each sector

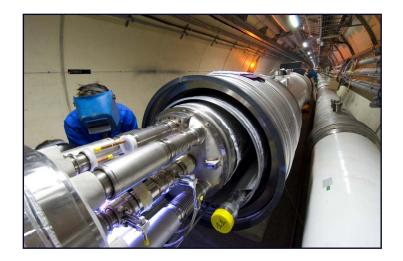
- Cryo-magnets storage
- Cryo-magnets transport in parallel with QRL installation and interconnections works

- Change of the sector sequence
- Squeeze time dedicated to the machine phase
- -> change the scope of contracts which were already signed (human and material resources to be added)
- Squeeze the hardware commissioning phase by almost a factor 2 -> find resources to parallelize

Machine phase

- Most of cryo-magnets transported through a unique shaft: PMI2 (+PX65 & PX24)
- More than 1'700 magnets transported

- Cross working sites in a narrow areas
- Some breakdown at the very beginning teething problems
- Delays in magnet's deliveries: most of the time, no margin between surface readiness and transport
- Dedicated task force to ease the process (technical and organizational)

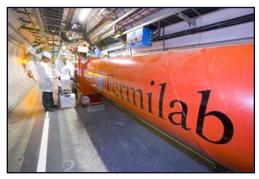

<u> Мата Манта Манта Минта Манта Манта Манта Манта Манта Манта Манта (</u>

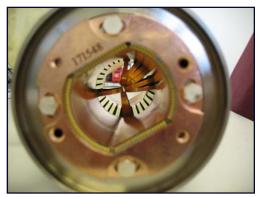
Machine phase

Interconnections

- Including:
 - more than 1'900 interc.
 - vacuum tests
 - electrical tests

- Slow start-up: missing magnets, co-activities
- Got organized on the 3rd sector while continuous sequence of magnets were available.




Machine phase

Interconnections Major incidents

- November 06 Inner Triplets failure: heat exchanger tube
- Few weeks later after repair: Inner triplets spiders failed
- ► Sector 78 cooled and power test without IT in order to gain experience.
- September 07: PIM crisis
 - Ingenious solution for diagnostic : RF ball
- February 08: connection cryostat crisis

Hardware Commissioning Phase

Short Circuit Tests & Individual System Tests

 Each system individually commissioned with relevant performance assessment

• IST Include:

- cryogenic line pressure and leak tests,
- collimators tests.
- Powering Interlock System tests,
- Energy Extraction tests,
- Beam Instrumentation tests,
- Injection and Beam Dump systems tests,
- Cryogenics Instrumentation tests,
- Had to fit within tight constraints of the LHC installation planning

<u> Мата папап папап папап папап папап папап папап папап папа п</u>

Hardware Commissioning Phase

Cool-down

- Started in January 2007. painful beginning, but weak points identified:
 - Cryogenics
 - Cold compressor tuning
 - Cryo commissioning of stand alone magnets
 - DFB's : condensation and thus frost
 - Services
 - Power cuts
 - Faulty relays
 - Network problems
 - CV consolidations

Hardware Commissioning Phase

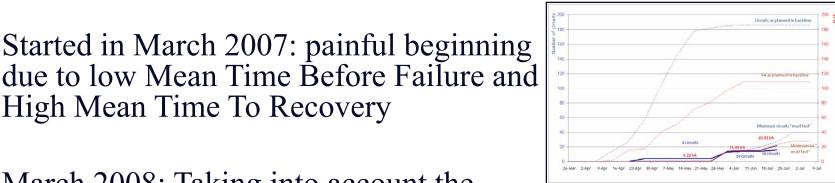
Powering tests

мата папата папата папата папата папата папата папата папата папата

Object: power test each sector independently to ensure a safe and efficient machine start-up without being plagued by technical problems.

Reminder: in 2003, \sim 10wks/sector and one sector at a time

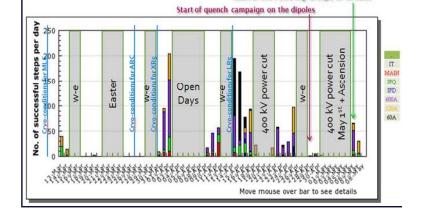
Beginning of 2007, after QRL and IT crisis, decision was taken to increase the number of sectors being commissioned in parallel from 2 up to 6!


Hardware Commissioning Phase

Powering tests

Started in March 2007: painful beginning

From mid-June: every 2 weeks, a sector will be available for powering tests


March 2008: Taking into account the recent delays, and in order to meet the target of a beam in LHC before the end of this summer, decision was taken to

qualify circuits at least for 5TeV.

High Mean Time To Recovery

Situation in May 08:

- Sector 45 commissioned partially
- Sector 56: commissioned to 5TeV
- Sectors 78 & 81: progressing

Lessons learned

- Keep baseline documentation is essential through the lifetime of the project
- Integration vs. Installation

- Safety
- First 25% of installation (2/8 sectors) are longer
- Gain experience asap for each phase is a benefit
- Fast Internal Intervention team is crucial

