HVAC OVERVIEW and VALUE ENGINEERING ITEMS

June 5, 2008

GDE Meeting-ILC CFS Workshop in Dubna, Russia

Lee Hammond, Fermilab

RDR - Air treatment Design Basis

- **Tunnel Ventilation** Conditioned dehumidified air from surface mounted equipment is ducted into the service tunnel at each shaft. A volume of 15000cfm (425meter³/min) flows at approximately 88fpm (1.6km/hr) to the midpoint between shafts where it is routed into the beam tunnel and returned to the shaft area. Fresh air at a rate of 20% (air change/16hr) is mixed into the air then conditioned and it is recirculated back to the service tunnel. Air volumes for the DR and BDS are similar.
- **Hazardous Conditions** The air direction is reversible and capable of being doubled (unconditioned) during hazardous situations.
- **Design temperature ML** The design temperature for the ML service and beam tunnels is 80-90F (27-32C). ML electronics' heat rejection is mainly to CHW direct cooling and FCUs with small amounts of heat to the ventilation air. AHU and FCUs are used at alcoves and shaft areas.
- **Design temperature DR** The design temperature for the DR tunnel is 104F (40C), using process water fan coil units, and the tunnel wall as a heat rejection source.

RDR - Air treatment Design Basis

- Design temperature BDS The design temperature for the BDS is 85-90F (29-32C). The low "heat to air" load is mainly absorbed by the tunnel wall. Air mixing fans will be used for temperature stability as required by the BDS.
- Used the basis that airflow could pass from the service tunnel to the beam tunnel through fire/smoke/ODH/radiation protected passages between the tunnels. This assumes that radiation/oxygen deficiency hazards (ODH) do not exist or can be mitigated between the tunnels from the standpoint of air mixing. This item needs concurrence from rad/ODH groups.
- AHU and FCU sizes in the alcoves and tunnels did not consider heat absorption by the rock wall. These units use chilled water from the surface as the heat rejection source.

Air Treatment WBS

• Air Treatment is about 1% (or 5.5% of CFS

when CHW system is moved to the air treatment section)

<u>o.676 KW per waveguide pene</u> ~300cfm @ 7 air delta T X 64 = additional 19,200 cfm air

- •Waveguide load in the beam tunnel will **still** need be picked up by fancoils
- Means of air balancing at each penetration needed
- •Some part of tunnel will have ~200 fpm air speed

POST RDR

	Heat Load KW per RF				
		Post RDR	Post RDR		
	RDR	<u>as of</u> Dec	after Dec		
		07	07		
Service Tunnel (ML RF)					
to water	100	104			
to air	26	21.4			
racks	11.5	11.5			
beam tunnel (ML RF)					
to water	included	included			
to air (wvguide)	0	5.9			
Load to air, servc tunnel, w /m	~ 684				
Servc tunnel temp F	85	104	> 104???		
		85 (cooler			
DR tunnel temperature F	104	LCW)			
Metrology reqmnt (GDE Oct 2007)		< 90F			
Air Stability		+ - 0.1 C			
Water Supply stability		+ - 0.2 C			

8

Rock Contribution?

						Temp up
		<u>KW</u> in	Material (K in W/m-	Temp	Tunnel	to what
Analysis by	W/M	36m RF	K)	in (F)	Dia-m	radius
Ztang - Sep 2006	130	-4.68	Rock (4.6)	86	5	55F (25m)
Ghowden - Jul 2003	73	-2.63	Earth, Sandstone,	113		
Spowden -Jul 2003	75	-2.03	Conc (varies)	115	3	77F (10m)
SSC TP/JT - Feb 1985	29	-1.04	Dolomite (3.5)	65	2.5?	55F (30m)
A Enomoto - June 2008	100	-3.60				

Some discussions and preliminary investigation, but not considered

There still is considerable KW load to the air per RF - chilled fancoils are needed to maintain temperatures

RDR Chilled Water Schematic

Surface Air/CHW Plant locations

Air Treatment Summary

- Air Treatment Components in RDR:
 - Large air handling systems providing heating, cooling, dehumidification, humidification.
 - Fans for air purge, tunnel and shaft pressurization
 - Miscellaneous ducting and accessories, dampers, insulation, etc
- Chilled water systems including chillers, cooling towers, piping and accessories will be moved to the Air Treatment WBS
- Air treatment design is dependent on the ventilation requirements and the heat load criteria received from the area systems
- Air treatment and purge systems have not been fully investigated for radiation and ODH issues. Need further input on air flow configuration concerning radiation and ODH issues
- Air treatment and purge systems configuration were not developed with consensus of any AHJ (authority having jurisdiction, even who this is may not be identified for some time). Need fire protection consultant.

POST RDR

DESCRIPTIONs & "color" legend (DRAFT Dec 18 2007)	Long to the	
(Geb-Feed) may not result to large anythms	dependence.	
MARE ROSS DEC 04 2007 DIRECTION LIST TO BE EVALUATED	short	
Will be realisted by Cherneld BF and CFS whether high coal and too impact or not	denc tplicat	
inst shaded) = Barra thai im Not Sura		
Provide one high efficiency cogen power / cooling plant on site and distribute power and 33 degree F chilled wder throughout the facility, remove the power generation and chilling cost from the project cost	Steve	
Eliminate one piping system by using process water as primary rejection for chilled water system with jusing religerated heat pump as fancels; and standations chillers for racks)	Ex.I	
Diminals are piping system by using process sets: as primary rejection for chilled were system with jusing process cooled funccility, warmer turned (term 5_51)		
increase the delia. Tim five LCW and chilled weise systems to 30 degrees, reduce flow, pipe size with	Cont	
	- C. L.	
Lower the lengerature in the turned to 65 or 70 degrees to increase operating efficiency, extend equipment He, and	21010	
improve operating environment with	Steve	
Consider use of renewable energy source for use with cogen system with	Steve	
Provide a cost analysis for reducing the overall cooling load by 5% and 10% w/H	Steve	
Centralize the cooling system	Steve	
Provide distributed cogen power / cryo (similar to #1 &2)	SHOW	
Decentralize the 345 KV substation function wf 10, 20, 30, 4, 39	Tracy	
Decirically engineer the distribution system to optimize and reduce cost with		
Provide connection to electrical utility system at all shafts (w/ #3)	Таку	
Optimize substalion spacing w#85	Tracy	
Let the electrical utility construct substations and don't include that cost in the project construction cost with	Tracy	
Laterative the www.laterateconfigure all flow from the ends.	Lee	
Pipe two chilled water colls in series, chilled water reclaim, size one for 30 degree delta T w/#10	Larry	
Let the temperature in the turned go to 104 degrees If during normal operation and local cost to 05 degrees where expleters (consider increased cost to more a equent represent)	Kath	
Raise turnel temperature to 183 degrees al all trove (meets OSHA requirements) with3	Name	
Provide air conditioned suits for personnel working in tunnel and let the temp go higher than OSHA requirements witht3	Keth	
Consider oversiding electrical cables and transformers to reduce heat	Keith	
Redesign the RF loads for more optimal process weier flow	ALC: N	
	1.00	
Bedge Buffing level is errors finite	Tom	
Reduce water pressure drop across components, minimize head pressure		
Examine possibility of going to 2 condenser water loops instead of 3 as presently planned	Excil.	
Correlder using low moveral content water instead of LOW w20 (design value system for low moveral value)	Kath	
Allow different larges of size materials: PAC CRVC HDPE carbon free searced PE siz in lass of statement size	Rick	
Consider replacing the function units with a cruited water beam (stolars cooling). Dot the water obtack in the concrete also, effective close supports.	Tom	
Use wher coded waveguide in the accelerator tunnel in fleu of all coding	ALC: N	
Provide passive convection tunnel using cooling shafts during colder months	Les	
Provide multiple modes of operation dependent on outdoor temperature	Les	
Develop loads that do not require low conductivity water	Publish	
Use the veryegoide pressurization system for cooling the waveguide (flow cooled gas inside the waveguide)	-	
Pulse the power source for selected loads when not being used	Tom / controls	
Use pressure regulators to control the hydrostatic pressure in the collectors	John Mathia	
Define the maximum hydrostatic pressure for the collectors	Millio	
Consider expandability of systems - modular vs centralized	Tom	
Researching the hot changeout of modulator power supplies	Keith	
Plan for a 4 month downline during the summer	Rick	
Limit the operation of the system to 72 degree wet butb	Rick	
Use CO2/radon monitoring and limit the intake of outside air to what is necessary to maintain a safe environment	Les	
Use a dexaicant to dehamidity ventilation air	Les	
Evaluate each load individually to determine requirements	AND A	
Estabilish power budgets for the relay racks (400 W / RF + 10% of power supplies)	Kelth	
Provide power supply that will work with verm water if micessary (quasi militarized)	Kaith	
Use on alle ponds for make up water		
Contrast using colling pands in lieu of cooling towers		
browses the memory of P stations or LCW skids		
Use whore phase cooling on the collector and compareds signification excess analyze		
Use the lowest KVA transformer to reduce heat load		
Consider use of geothermal cooling		
Use the Fox river for ance thru primary cooling, eliminate the cooling towers		
Use modular systems for all equipment		
Eliminate Reck Skid and replace with just pump	Tona Emili	

Specific V.E. List

•About 50+ list from V.E. in Nov 2007, List from value engineering sessions in Nov 2007. Some appear to have real good cost reduction potentials.

•Talks located in

http://ilcagenda.linearcollider.org/conferenceDisplay.py ?confId=2328

•Description of each list, but no detailed evaluation <u>no</u> pros/cons and cost impact evaluation done yet

•Color coded

Red=Marc selected on Dec 4 2007

Yellow=potential VE but not necessarily cost reduction?

Green= by others (HLRF), not CFS

Gray=ignore

White=not sure

•Further effort stopped on Dec 18 07

HVAC/CHW Value Engineering Studies

- Provide one hi-efficiency cogen power/cooling plant on site and distribute power and 33°F (0.6°C) CHW throughout the facility,
 - Removes power/CHW production systems costs from the project cost.
 - Removes one piping system from project.
 - 33°F CHW = smaller pipes, lower HP pumps, smaller HXs, very HI delta T (90°F/50°C+)
 - Cogen plant builder/operator finances, builds, operates, and maintains power plant then sells utility power and CHW to ILC.
 - Allows cooling of tunnel and electronics mitigating high temperature disadvantages.
 - Centralize plant reduces shaft/support area footprints.
- Centralize the HVAC and reconfigure airflow from tunnel ends or center.
- Modify top-of-shaft HVAC to only process make up air, add blowers at tunnel level for recirculation.
- Investigate use of dessicants to dehumidify make up air. Could use heat recovery from cogen plant.
- Investigate alternate piping materials, PVC, copper, HDPE, etc.