

GDE Status/Update

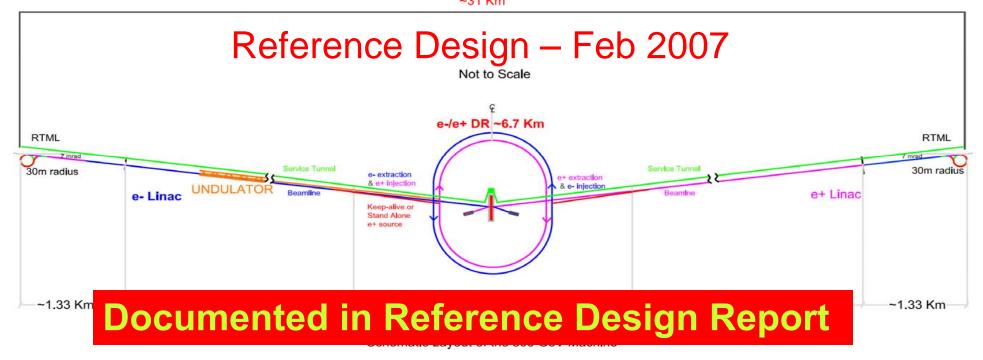
Barry Barish

GDE Meeting at Dubna

4-June-08

4-June-08 GDE Meeting - Dubna **Global Design Effort**

1


Outline

- General Remarks
 - Updates on our plans and the global climate
- Technical Design Phase
 - Strategy for the next phase
- Dubna GDE Meeting
 - Technical Design Phase R&D Plan
 - Presentation of Dubna Site
 - Convention Facilities Approach --- Uniform Siting

TDR Starting Point: ILC RDR

- 11km SC linacs operating at 31.5 MV/m for 500 GeV
- Centralized injector

- Circular damping rings for electrons and positrons
- Undulator-based positron source
- Single IR with 14 mrad crossing angle
- Dual tunnel configuration for safety and availability

The reference design was "frozen" as of 1-Dec-06 for the purpose of producing the RDR, including costs.

It is important to recognize this is a snapshot and the design will continue to evolve, due to results of the R&D, accelerator studies and value engineering

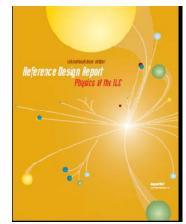
The value costs have already been reviewed twice

- 3 day "internal review" in Dec
- ILCSC MAC review in Jan

Σ Value = 6.62 B ILC Units

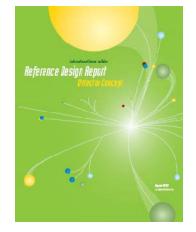
RDR Design & "Value" Costs

Summary **RDR "Value" Costs Total Value Cost (FY07)** 4.80 B ILC Units Shared **1.82 B Units Site Specific 14.1 K person-years** ("explicit" labor = 24.0 M person-hrs @ 1,700 hrs/yr) 1 ILC Unit = \$1 (2007)


4-June-08 GDE Meeting - Dubna

ILC Reference Design

• Reference Design Report (4 volumes)


Executive Summary

Physics at the ILC

Accelerator

Detectors

4-June-08 GDE Meeting - Dubna

ilr

ΪĹ

Global Design Effort

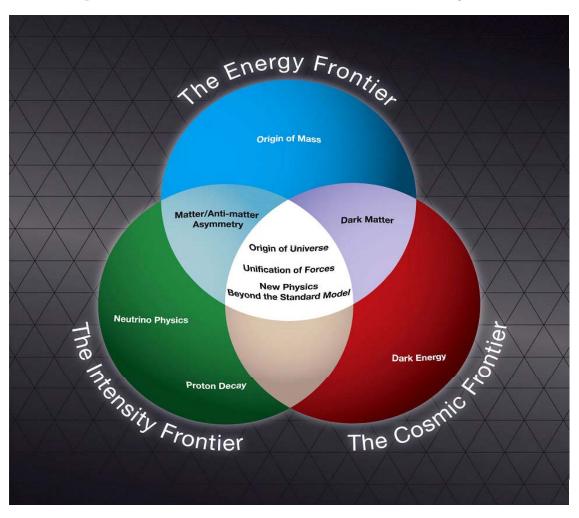
5

Next Steps: The GDE

- Build on Successes of GDE, RDR and DCR
 - Be ready to make solid funding proposal compatible with the timescale for scientific results from LHC that could justify proposing a new accelerator construction project.
- Plan

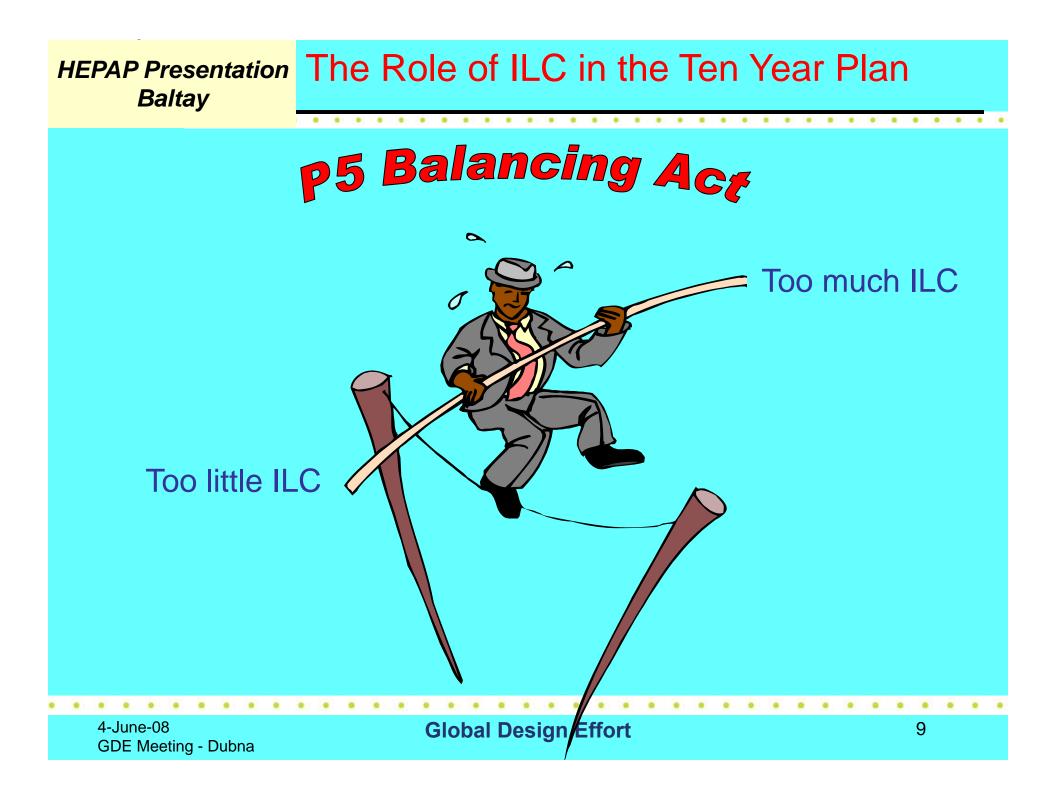
- Re-structured the GDE into a more traditional project management structure, using project tools.
- Our primary program is to carry out a design and R&D program focussed on refining the RDR design through design studies and value engineering, as well as demonstrating key technologies.

Impacts of US / UK Funding Actions


- UK ILC R&D Program
 - About 40 FTEs. Leadership roles in Damping Rings and Positron Source, as well as in the Beam Delivery System and Beam Dumps.
 - All of this program is generic accelerator R&D, some of which are continuing outside the specific ILC project, retaining some key personnel.
- US Program

IIL

- ILC R&D reduced \$60M → \$15M for FY08. Planning a reduced level program for FY09 and beyond. US President's FY09 budget proposal is \$35M
- Generic SCRF also terminated in FY08, but is proposed to be revived in FY09 to \$25M. and separated from ILC R&D.


P5 presentation to HEPAP 29-May-08

4-June-08 GDE Meeting - Dubna

Global Design Effort

8

HEPAP Presentation Baltay

Lepton Colliders

- The international particle physics community has reached consensus that a full understanding of the physics of the Terascale will require a lepton collider as well as the LHC. The panel reiterates the importance of such a collider.
- In the next few years, results from the LHC will indicate the required energy for such a lepton collider.
- If the optimum initial energy proves to be at or below approximately 500 GeV, then the International Linear Collider is the most mature option with a construction start possible in the next decade.
 - The cost and scale of a lepton collider mean that it would be an international project, with the cost shared by many nations.
 - International negotiations will determine the siting; the host will be assured of scientific leadership at the energy frontier.
- A requirement for initial energy much higher than the ILC's 500 GeV will mean considering other collider technologies.
- Whatever the technology of a future lepton collider, and wherever it is located, the US should plan to play a major role.

HEPAP Presentation Baltay

Lepton Collider R&D Program

- For the next few years, the US should continue to participate in the international R&D program for the ILC to preserve the option of an important role for the US should the ILC be the choice of the international community. The US should also participate in coordinated R&D for the alternative accelerator technologies that a lepton collider of higher energy would require.
- The panel recommends for the near future a broad accelerator and detector R&D program for lepton colliders that includes continued R&D on ILC at roughly the proposed FY2009 level in support of the international effort. This will ensure a significant role for the US even if the ILC is built overseas. The panel also recommends R&D for alternative accelerator technologies, to permit an informed choice when the lepton collider energy is established.
- The panel also recommends an R&D program for detector technologies to support a major US role in preparing for physics at a lepton collider.

So, where do we stand?

- In the UK we have retained the key ingredients (e.g. intellectual leadership) in our efforts toward a linear collider.
- In the U.S., our budget should be restored at a level near the 2007 level and we can expect support at that level through technical design phase
- There is no long term commitments to a linear collider in either the U.S. or U.K. We will need both exciting validating science results from the LHC, and we will need a very successful TDP, cost reduction, a realistic siting plan, and an attractive project implementation plan

How we propose to move forward!

- General Theme: **RISK REDUCTION**
 - We must re-examine our design and optimize for cost to performance.
 - This will require aggressive studies of the major cost drivers, reducing scope, staging, etc. This will be done openly and in full coordination with experimentalists.
 - We must develop our technical design such that major technical questions (gradient, electron cloud, etc) are positively resolved
 - We must develop the technical design in preparation of making a construction proposal (plug compatible designs, value engineered concepts, etc.
 - Finally, we must develop an attractive, realistic and flexible Project Implementation Plan
- At this time, the central coordination of the GDE is even more essential, if we are to accomplish these goals
- A two stage Technical Design Phase (TDP-1 2010 and TDP-2 2012 is proposed. Draft submitted to ILSCS and circulated at this meeting. Finalize following Dubna and update ~ 6 months

IIL

Some Context for our Replan

- Building close collaboration with XFEL. It will provide all SCRF development, except high gradient and ILC scale mass production, including a full systems test in 2013, industrialization, etc.
- We plan to take advantage of alignments and synergies where they will exist with US generic SCRF program, Project X development, etc.
- Undertaking steps to integrate linear collider (ILC and CLIC) R&D efforts, where beneficial to both efforts (meeting on 8-Feb, 13-May). Examples – sources, beam delivery, conventional facilities, detectors, costing,

- Meetings at CERN in November when I visited CERN to give an ILC colloquium
 - Meeting with the CLIC Extended Steering Committee, where I suggested we explore areas of joint work, where both stand to gain.
 - Meeting with R Aymar, who also endorses the general idea of increasing areas of joint work
- Follow up meeting in February and May to organize and identify areas of joint interest
- Dubna meeting will involve joint ILC-CLIC site studies

Initiating Joint Areas

- Co-conveners of the CLIC-ILC working groups
 - Civil Engineering and Conventional Facilities (CFS): Claude Hauviller/CERN, John Osborne/CERN, Vic Kuchler (FNAL)
 - Beam Delivery Systems and Machine Detector Interface: D.Schulte/CERN, Brett Parker (BNL), Andrei Seryi (SLAC),, Emmanuel Tsesmelis/CERN
 - Detectors: L.Linssen/CERN, Francois Richard/LAL, Dieter.Schlatter/CERN, Sakue Yamada/KEK
 - Cost & Schedule: John Carwardine (ANL), Katy Foraz/CERN, Peter Garbincius (FNAL), Tetsuo Shidara (KEK), Sylvain Weisz/CERN
 - Beam Dynamics: A.Latina/FNAL), Kiyoshi Kubo (KEK), D.Schulte/CERN, Nick Walker (DESY)

Essential Elements of TDP

• Draft Document

- "ILC Research and Development Plan for the Technical Design Phase" Release 2 June 2008
- Key Supporting R&D Program (priorities)
 - High Gradient R&D globally coordinated program to demonstrate gradient for TDR by 2010 with 50%yield
 - Electron Cloud Mitigation Electron Cloud tests at Cornell to establish mitigation and verify one damping ring is sufficient.
 - Final Beam Optics Tests at ATF-2 at KEK

ilc.

- Timescale: Interim report mid 2010
- Major theme: High-priority risk-mitigating R&D
 - Superconducting RF linac technology technical demonstration of gradient and quantifying the scope for potential cost reduction
 - Produce a new baseline for the conceptual machine design, in preparation for more detailed technical design work in TD Phase 2.
 - The re-baseline will take place after careful consideration and review of the results of the TD Phase 1 studies and the status of the critical R&D.

TD Phase 2

- Timescale: Produce report mid-2012
- First goal: New baseline design
 - Detailed technical design studies
 - Updated VALUE estimate and schedule.
 - Remaining critical R&D and technology demonstration
- Second Goal: Develop a Project Implementation Plan.

ilr

ILC R&D Major Test Facilites

Test Facility	Acronym	Purpose	Host Lab	Operation start	Organized through:
Accelerator Test Facility	ATF	Damping Ring	KEK	1997	ATF Collaboration
Cornell Test Accelerator	CESR-TA	Damping Ring	Cornell	2008	Cornell
Superconducting RF Test Facility	STF	Main linac	KEK	2008	KEK
TESLA Test Facility/ Free Electron Laser Hamburg	TTF FLASH	Main linac	DESY	1997	TESLA Collaboration, DESY
ILC Test Accelerator	ILCTA-NML	Main Linac	FNAL	2009	Fermilab
Beam Delivery Test Facility	ATF-2	Beam Delivery	KEK	2008	ATF Collaboration
End Station A (program terminated 2008)	ILC- SLAC ESA	Machine – Detector Interface	SLAC	2006	SLAC

4-June-08 GDE Meeting - Dubna

Global Design Effort

R&D Test Facilities Deliverables

Test Facility	Deliverable	Date						
Optics and stabil	isation demonstrations:	-						
ATF	Generation of 1 pm-rad low emittance beam	2009						
	Demonstration of compact Final Focus optics (design demagnification, resulting in a nominal 35 nm beam size at focal point).	2010						
ATF-2 Demonstration of prototype SC and PM final doublet magnets								
	Stabilisation of 35 nm beam over various time scales.	2012						
Linac high-gradie	ent operation and system demonstrations:	-						
TTF/FLASH	Full 9 mA, 1 GeV, high-repetition rate operation	2009						
STF & ILCTA-	Cavity-string test within one cryomodule (S1 and S1-global)							
NML	Cryomodule-string test with one RF Unit with beam (S2)	2012						
Electron cloud m	itigation studies:							
	Re-configuration (re-build) of CESR as low-emittance e-cloud test facility. First measurements of e-cloud build-up using instrumented sections in dipoles and drifts sections (large emittance).	2008						
CESR-TA	Achieve lower emittance beams. Measurements of e-cloud build up in wiggler chambers.							
	Characterisation of e-cloud build-up and instability thresholds as a function of low vertical emittance (≤20 pm)							

TD Phase 1 & 2 Schedules

calendar year	2008 :	200	J9 į	124	010		2011		2012	
Tech. Design Phase I										
Tech. Design Phase II										
Siting										
Shallow site option impact studies			<							
Definition of optimal site				0						
Collider Design Work										
Definition of minimum machine		0								
Minimum machine & cost-reduction studies			ج (
Review TDP-II baseline				0						
Publish TDP-I interim report					0					
Prepare technical specifications						0				
Technical design work								C)		
Generate cost & schedule								0		
Internal cost review								•		
Design and cost iteration									<	
Technical Design Report										7
Cost & Schedule Report										
Project Implementation Plan Report										
Publication final GDE documentation & sub	mit fo	г ргојес	t app	roval						
Project Implementation Plan		ÍÍ		: 1						
Review and define elements of PIP		0								
Develop mass-production scenarios (models)				0						
Develop detailed cost models						0				
Develop remainder of elements									<	5
SCRF Critical R&D										
CM Plug compatibility interface specifications			<	5						
S0 50% yield at 35 MV/m					0					
S0 90% vield at 35 MV/m										
Review baseline gradient choice				0						
S1-Global (31.5MV/m cryomodule @ KEK)						0				
S2 RF unit test at KEK										4
S1 demonstration (FNAL)							0			
S2 RF unit at FNAL										4
9mA full-beam loading at TTF/FLASH (DESY)			0							
Demonstration of Marx modulator					0					
Demonstration of cost-reduced RF distribution					0					
Other critical R&D										
DR CesrTA program (electron-cloud)				0						
DR fast-kicker demonstration						0				
BDS ATF-2 demagnification demonstration						6				
BDS ATF-2 stability (FD) demonstration										
Electron source cathode charge limit demonstration	on 🖿					0				
Positron source undulator prototype		0				1				
Positron source capture device feasibility studies		1		0						
RTML (bunch compressor) phase stability demo				1	0	:		1	1 1	

4-June-08 GDE Meeting - Dubna

Global Design Effort

22

TD 1 Phase Resources – SCRF Facilities

			F	TE-Y	ear	S				to	tal M	&S		
		Cavities	Cryomodule	HLRF	Cryogenics	ML Integ.	total FTE-Years	Cavities	Cryomodule	HLRF	Cryogenics	ML Integ.	total M&S	
Americas	Canada	18					18	1050					1050	
	USA	73	24	68	5	14		9169	3960	5909	134	362		-
	China	12	8	8	4	1	33	10000	10000	10000	5000	1000	36000	kRMB
Asia	India	24	12				36	1560	900				2460	· ·
Asia	Japan	45	6	11	4	5	72	2225	462	452	180	1119	4438	M JY
	Korea	13		5			18	1500		245				M KRW
	EU (CERN)				1	4	5					129	129	kEUR
	France	94					94	10058					10058	kEUR
	Germany	51	10	7	7	9	83	1705	361			23.5	2089	kEUR
	Italy	38	8		1	1	48	1182	160				1342	kEUR
Europe	Poland													kEUR
Luiope	Russia	2	20				22	20					20	k\$
	Spain		3				3		9				9	kEUR
	Sweden													kEUR
	Switzerland													kEUR
	UK													kGBP
		370	90	99	21	34	615							

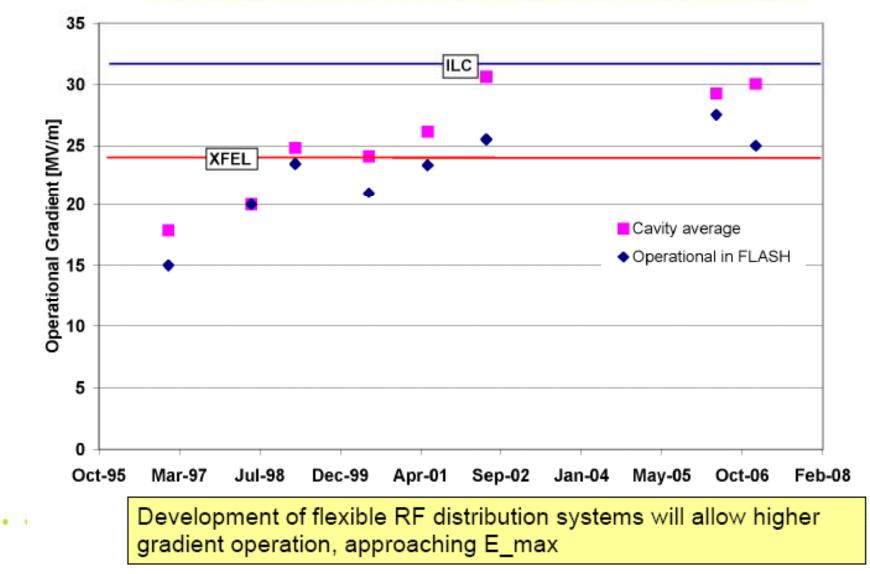
ilc

TD 1 Phase Resources – Conv Facilities

		FT	E-Yea	ars		tota	al M&S	5
		S-D	Controls	total FTE-years	GFS	Controls	total M&S	
Americas	Canada							k\$
-	USA	12	18	30	1397	1098	2495	
	China		8	8		1000	1000	kRMB
Asia	India							k\$
ASIA	Japan	3	5	8				M JY
	Korea	1	1	2	40		40	M KRW
	EU (CERN)	2					0	keur
	France		18	18		307	307	kEUR
	Germany	3	14	17		63	63	kEUR
	Italy		4	4		80	80	kEUR
	Poland		20	20		248	248	kEUR
Europe	Russia	2		2	40		40	k\$
	Spain							kEUR
	Sweden							kEUR
	Switzerland		3	3		90	90	kEUR
	UK							kGBP
	(mixed)		11	11		95	95	kEUR
		23	102	112				

4-June-08 GDE Meeting - Dubna

ilr


Global Design Effort

TD 1 Phase Resources – Tech Accelerator Facilities

				FTE	E-Ye	ears						tot	al M8	S		
		Elec. Source	Posi. Source	Damping Rings	RTML	Beam Delivery	Simulations	total FTE-years	Elec. Source	Posi. Source	Damping Rings	RTML	Beam Delivery	Simulations	total M&S	
Americas	Canada			5				5			20				20	k\$
Americas	USA	11	8	28	1	48	16	113	617	144	7174	3	3847	190	11975	k\$
	China			12	4	20	2	38		500	5000	100	200	100	5900	kRMB
Asia India	India															k\$
Asia	Japan	2	7	16		23	4	52			722		375		1097	M JY
	Korea			2	2	4	3	12			26	26	201	26	279	M KRW
	EU (CERN)			2		1	4	7			7		2.3	8.6	18	kEUR
	France		11		5	12		27		390			6		396	kEUR
	Germany		22	3		4	4	33		32	7		36	14	88	kEUR
	Italy			17				17			300				300	kEUR
Europa	Poland															kEUR
Europe	Russia															k\$
	Spain					2		2								kEUR
	Sweden				2	2		3								kEUR
	Switzerland															kEUR
	UK		10	11		85		106		35	62		1537		1634	kGBP
		13	57	97	14	201	33	415								

Global Design Effort

DESY Cryomodule Performance

.

٠

<u>.</u> . . .

.

High-gradient cavity performance at 35 MV/m according to the specified chemical process with a yield of 50% in TDP1, and with a production yield of 90% in TDP2	2010 2012
 Nominal Cryomodule design to be optimized: plug-compatible design including tune-ability and maintainability thermal balance and cryogenics operation beam dynamics (addressing issues such as orientation and alignment) 	2009
Cavity-string performance in one cryomodule with the average gradient 31.5 MV based on a global effort (S1 and S1-global)	2010
An ILC accelerator unit, consisting of three cryomodules powered by one RF unit, with achieving the average gradient 31.5 MV/m (S2)	2012

.

Global R&D Plan

Consensus in SCRF-TA

Calender Year		2	2008	2009	2010	2011	2012	
EDR		•	TI	DP1		TD	P-II	
S0:	30				35		35	
Cavity Gradient (MV/m)		-			(> 50%)		(>90%)	
KEK-STF-0.5a: 1 Tesla- like/LL								
KEK-STF1: 4 cavities								
S1-Global (AS-US-EU)				СМ (4 _{АS} +2	_{US} +2 _{EU})			
1 CM (4+2+2 cavities)				<31.5 M\	//m>			
S1(2) -ILC-NML- Fermilab				CM2 CM3 CM4				
CM1- 4 with beam								
S2:STF2/KEK:			FabricationSTF2 (3 CMs)				CMs)	
1 RF-unit with beam				in industries Assemble				

Cavity Gradient

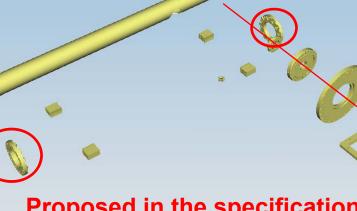
- TD Phase goals for gradient R & D are:
 - Achieve 35 MV/m in 9-cell cavity in vertical dewar tests with a sufficient yield
 - Preparation process and vertical test yield for 35 MV/m at $Q0 = 10^{10}$ should be greater than 50% for a sufficiently large number (greater than 100) of preparation and test cycles by the beginning of CY 2010 (TDP1) and 90 % by CY 2012 (TDP2).
 - (includes 20% re-processing fraction)
- Perform a series of inter-laboratory cavity exchanges and re-test sequences in order to cross-check and compare infrastructure performance
 - Deliver a gradient recommendation to the TD Project in time to allow the development of a consistent linac design. This should be before the beginning of CY 2012.

SCRF Global Cavity Program

	US FY06	US FY07				TDP-1		
Americas	(actual)	(actual)	US FY08	US FY09	US FY10	${\rm Totals}^{\star}$	US FY11	US FY12
Cavity orders	22	12		10	10	52	10	10
Total 'process and test' cycles		40	5	45	30	113	30	30
	JFY06	JFY07						
Asia	(actual)	(actual)	JFY08	JFY09	JFY10		JFY11	JFY12
Cavity orders	8	7	8	25	15	44	39	39
Total 'process and test' cycles		21	40	75	45	147	117	117
	CY06	CY07						
Europe	(actual)	(actual)	CY08	CY09	CY10		CY11	CY12
Cavity orders	60**	8		834		8		
Total 'process and test' cycles		14	18	26	30	73	380	406
Global totals								
Global totals - cavity fabrication	90	27	8	869	25	103	49	49
Global totals - cavity tests		75	65	135	175	333	501	501

4-June-08 GDE Meeting - Dubna **Global Design Effort**

Cryomodule Design: Plug Compatible


- TDP 2: RF Unit ≡ 3 each cryomodules
- R&D Priority High
 - Primary ILC 'High-Tech' component;
 - GDE development and construction plan must account for regional & institutional ambitions
- 6 basic components:
 - Cryostat, internal supports and cryogen plumbing:
 - and 4 interchangeable internal sub-assemblies

 Cavity + cryogen tank + tuner 	64% CM cost
 Power input coupler 	12%
• Quad	4%
• BPM	2%
(Cryostat & plumbing/supports	19%)

4-June-08 GDE Meeting - Dubna **Global Design Effort**

Plug Compatible Assembly

Proposed in the specification

Helium Vessel Body		KEK-STF-BL	KEK-STF-LL	FNAL-T4CM	DESY-XFEL
Helium Jacket	Material	Ti	SUS	H	Ti
	Slot length, mm	1337	1337	1326.7	(1382:Type3)
	Distance between beam pipe flanges, m	1258.6	1254.5	1247.4	1283.4
	Distance between bellows flanges, mm	78.4	85,2	80.49 (cold)	
	Outer diameter, mm	242	236	240	240
Beam Pipe Flange	Material	NbTi	Ti	NbTi	NbTi
	Outer diameter, mm	130	140	140	140
	Inner diameter, mm	84	80	82.8	82.8
	Thickness, mm	14	17.5	17.5	17.5
	PCD, bolts	φ115, 16−φ9	φ120, 16−φ9	12, M8 SS studs	12, M8 SS studs
	Sealing	Helicoflex	M-0 seal	Al Hex Seals	Hexagonal Al ring
	Distances between the connection				
	surface and input coupler axis	62, -1196.6	58.1, -1213.9	60.6, -1186.8	60.6, -1222.8

2008/4/23 4-June-08 GDE Meeting - Dubna

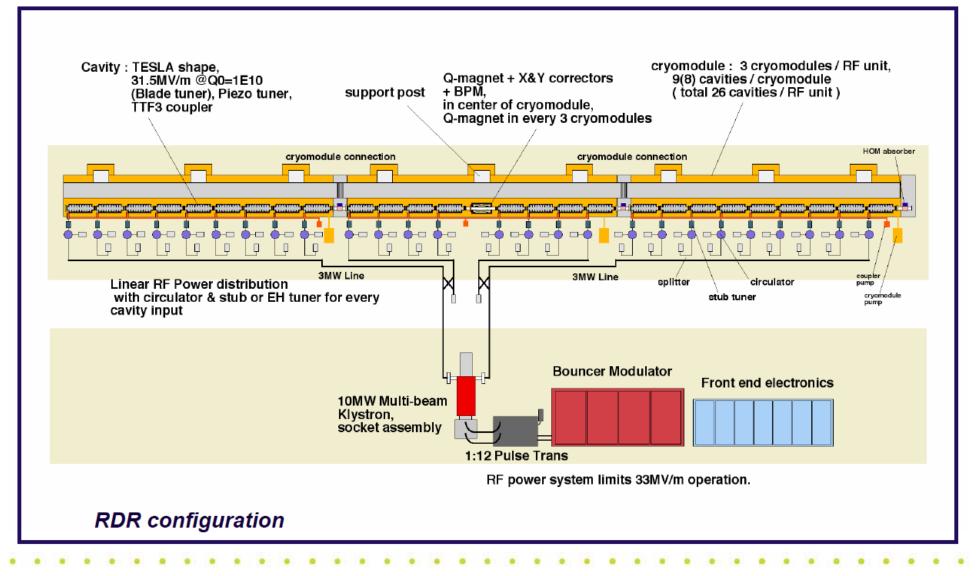
Global Design Effort

32

;lr

TDP 2 - 2012

- RF unit test 3 CM + beam (KEK)
- Complete the technical design and R&D needed for project proposal (exceptions*)
 - Documented design
 - Complete and reliable cost roll up
- Project plan developed by consensus
 - Cryomodule Global Manufacturing Scenario
 - Siting Plan or Process

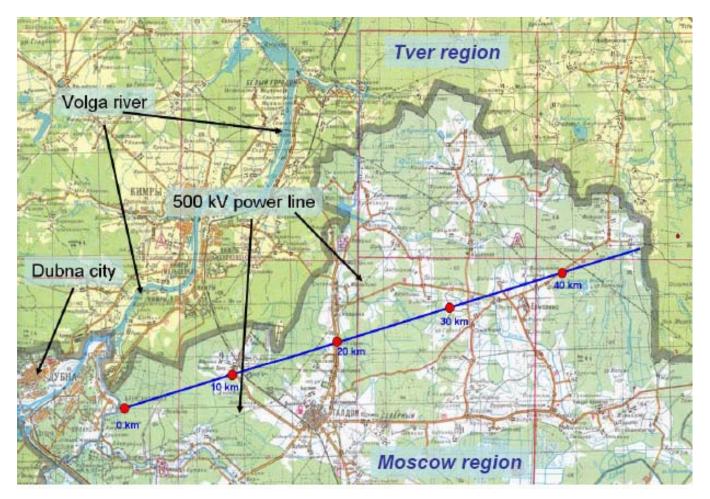

Cryomodule Testing Plan

- Development of CM unified design;
 - fabrication in at least two labs provides a test facility
 - Project X plans to adopt this design
- R&D goal:
 - A cryomodule (of any type) with operational MV/m gradient 31.5MV/m
- Testing to be completed: TDP2:
 - KEK /STF full beam test RF unit in 2012; CM testing from 2009
 - Fermilab NML CM testing from 2009

:lr

IIL

ILC Main Linac RF unit


4-June-08 GDE Meeting - Dubna **Global Design Effort**

Conventional Facilities Plan

- RDR based on "sample sites"
 - Accounts for about 1/3 of costs
 - Much specific information, but not cost minimized
- TD Phase proposed to produce "uniform" site study
 - Work together on siting to apply "value engineering" to minimize costs
 - Investigate shallow sites, single tunnel, etc.
 - Define uniform site
- Develop Siting strategy
 - Desired features, requirements, cost and other information for potential hosts
 - What is asked from hosts?

• Unique shallow site – thick loam layer near the surface.

4-June-08 GDE Meeting - Dubna

Global Design Effort

Uniform Design Approach

• Examine CFS Requirements for ILC Reference Design

 Develop Models for Cost Scaling to Various Alternative Sites and CFS Configurations, in Particular Shallow Sites and Single-Tunnel Options

• Examine the Conventional Facilities of the Machines with Particular Attention to the Cost Drivers (Process Cooling Water etc.), and Understand the Impact with Respect to the Choice of Site Configuration

• Evaluate Alternative Layouts to minimize cost and to understand the cost/ performance trade-offs

Special Strategy Session – tomorrow morning and closing talk by J Dorfan

4-June-08 GDE Meeting - Dubna

- We have presented the elements of the GDE plan for the next phase, which we call the Technical Design Phase.
 - A two stage ILC Technical Design Phase (TDP I 2010 and TDP II 2012 is proposed)
- Overall Goals: Cost reduction, technical design and implementation plan on the time scale of LHC results
- SCIENCE remains the key to ultimate success.