

Conventional Facilities and Siting

Focus Group B Summary

--- ILC Cooling-Water System ---

Convener Atsushi Enomoto (KEK)

ILC GDE Meeting 6 June 2008, JINR (Dubna)

Presentation Lists

June 5 14:00-16:00

Marc Ross, PM Introduction Emil Huedem, Specific Value Engineering Overview (WEBEX) Wilhelm Bialowns, Parametric Measures

16:30-18:00

Ullrich Frank, XFEL Cooling (WEBEX) Shigeki Fukuda, Heat Loads and Delta Atsushi Enomoto, Cost Reduction Studies at KEK

June 6 9:00-10:30

Lee Hammond, HVAC Overview K. Foraz, LHC Experience

Discussions

P.Garbincious, L.Hammond, E.Huedem, V.Kuchler, T.Lacowski, M.Ross (FNAL) C.Adolphsen, J. Dorphan (SLAC), J.Cawardine (ANR), W.Bialowns, U. Frank, F.Lehner (DESY), K.Foraz, P.Derahare, J. Osbone, S. Weisz (CERN), A.Enomoto, S.Fukuda, R.Sugahara, M.Tanaka, A..Yamamoto, S.Yamada (KEK), S.Shkarovsky (JINR)

Goals of Focus Group-B

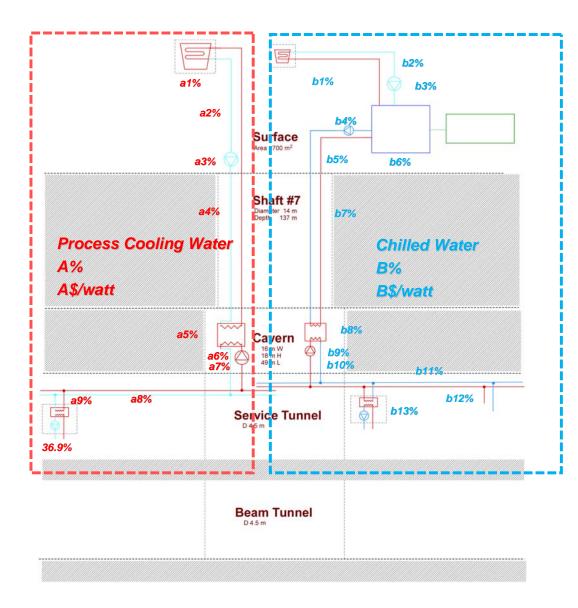
Global Design Effort

To discuss High Delta T possibility and to establish the goal of VE work up to November FNAL meeting.

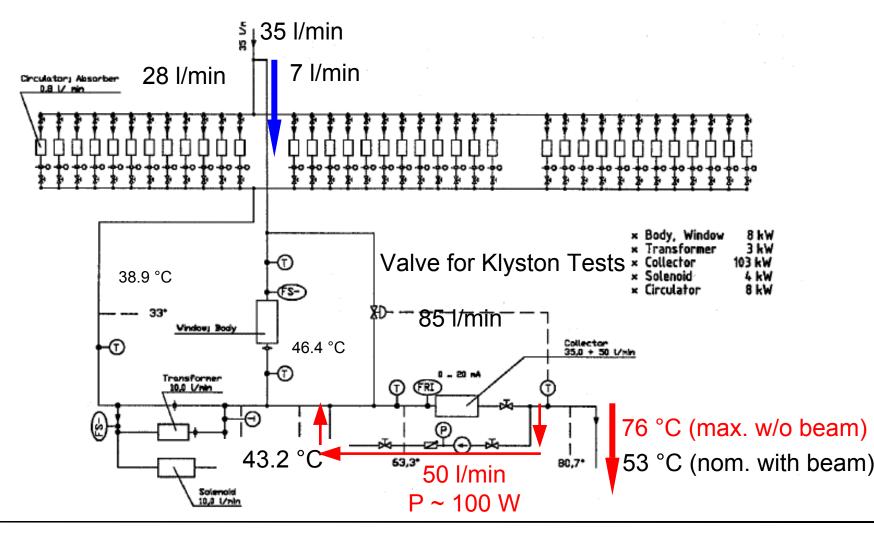
To discuss chilled water elimination or alternative system to cool room air and special RF precision apparatus.

:lr

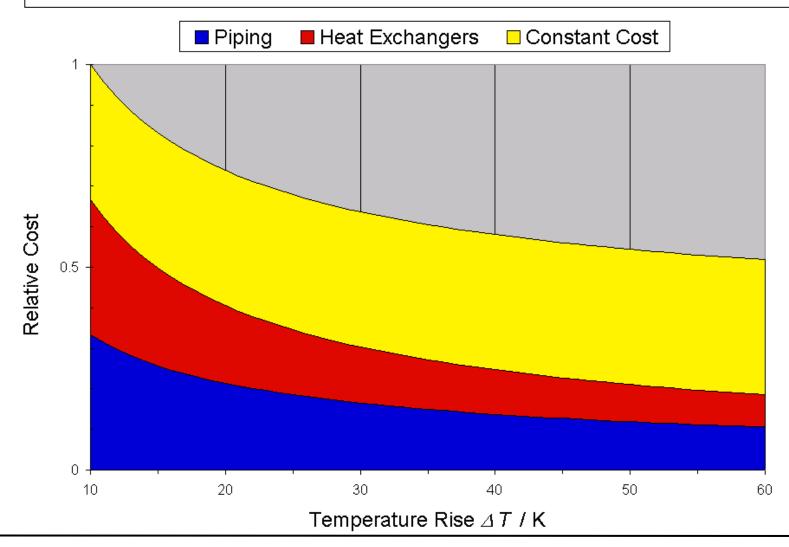
İİL


Highlights and Brief Notes from Presentations

ML cooling system cost is ~half of total area

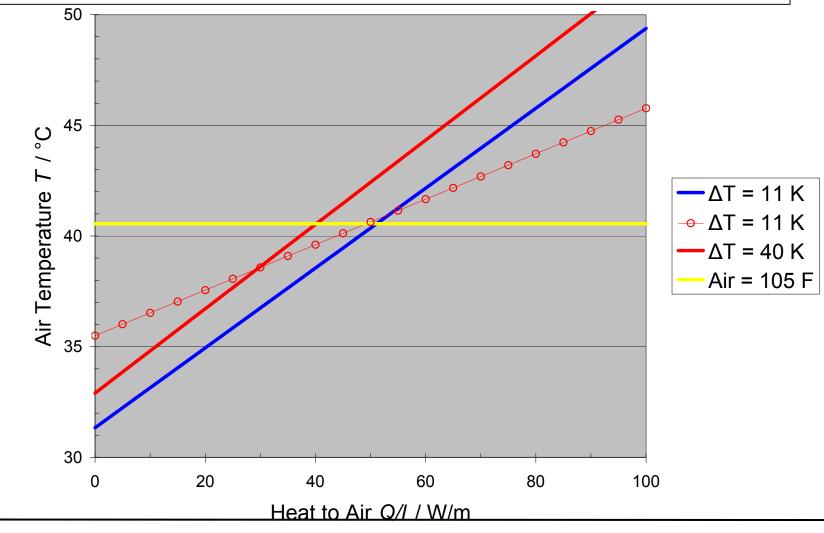

Process Cooling Water piping cost is expensive, including high percentage of LCW skids system ()

Low cost performance of Chilled water system



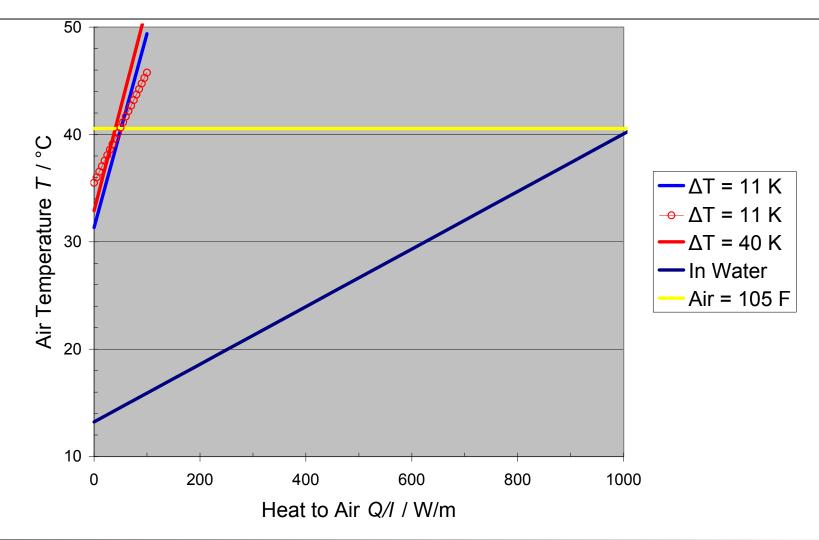
TESLA Cooling Scheme @ 5 Hz

Scaling of Process Water Costs

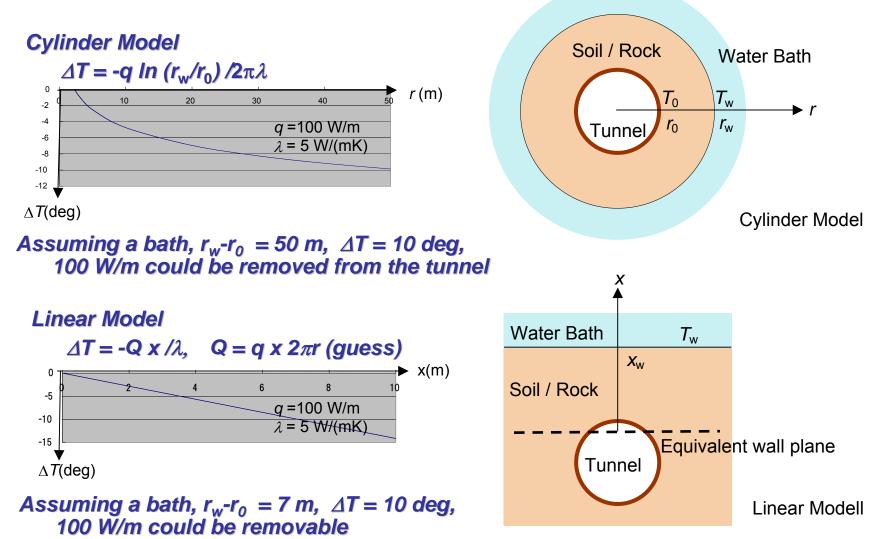

Conventional Facilities and Siting

Very preliminary results

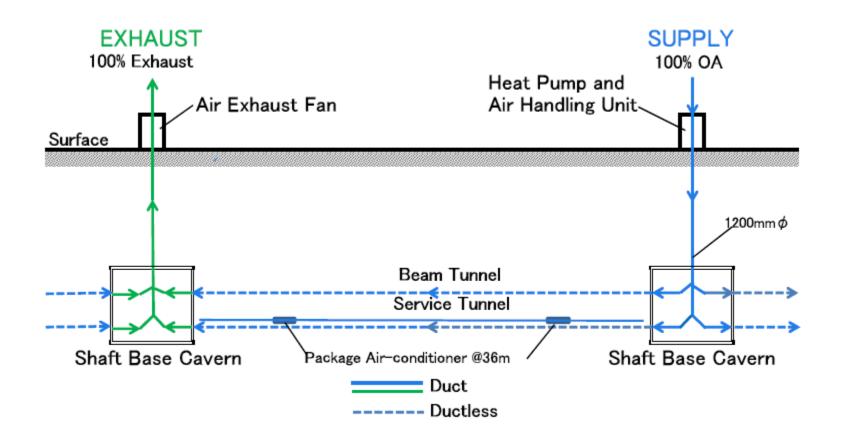
- Cost reduction in approx. 7%


Air Temperature of Tunnel in Bedrock

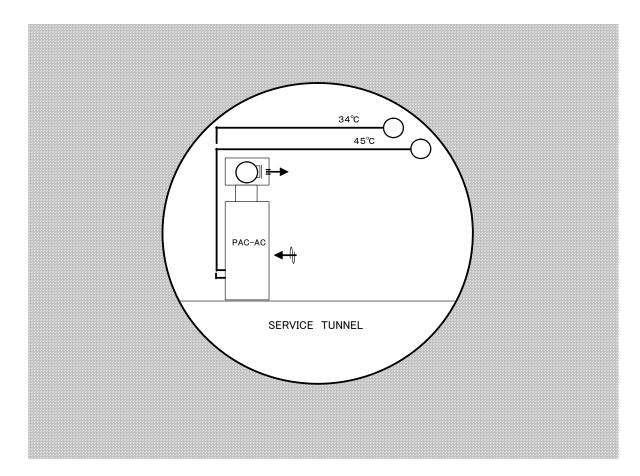
ILC GDE Meeting (JINR, Dubna)


Air Temperature of Tunnel in Water

ilc IIC Global Design Effort


Conventional Facilities and Siting

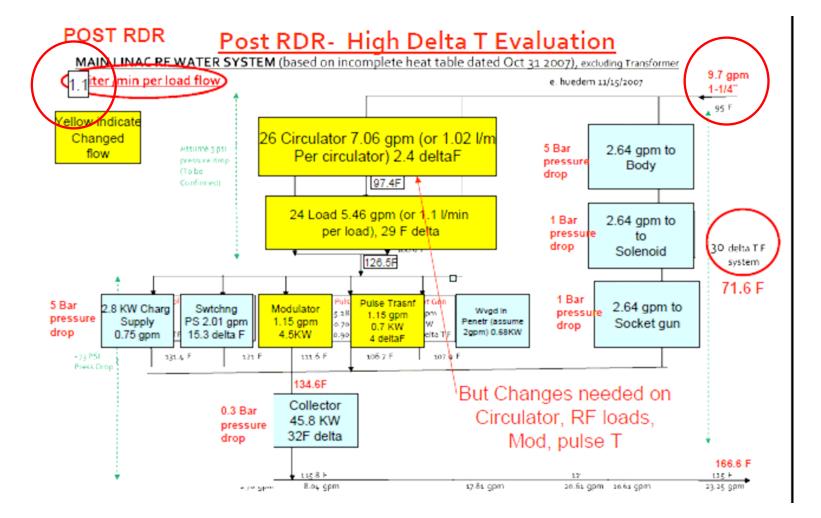
How is tunnel wall Temperature ?



Alternative HVAC scheme for tunnels

- supply & exhaust @ every other shafts

Size and space of package unit

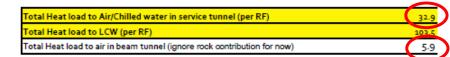

ilc IIC Global Design Effort

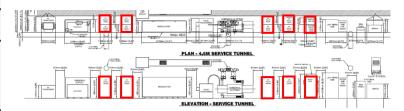
Plans to November

--- Alternative Proposal for Delta T ---

Summary

- (1) Many useful discussions.
- (2) Delta T increase and Chilled Water Decrease are potential measures to reduce cooling costs. Effect of high ∆T to room T may be suppressed by insulator with relative low cost.
- (3) Effect of high *∆*T to equipment and beam instability should be studied separately.
- (4) Alternative air cooling system using package air conditioner is proposed and under consideration.
- (5) More investigation and effort to decrease heat load to air are necessary.
- (6) Cooling effect by tunnel wall depends on geology of the site, though an order of ~100 W/m may be cooled under some conditions.
- (7) High DT study where kly col temp up to 75deg will be studied with a colaboration between KEK, FNAL and DESY.


Conventional Facilities and Siting


Top-5 heat loads to Air/ChW

Dec 14 2007

WATER AND AIR HEAT LOAD (all LCW) and 9-8-9 ML

MAIN LINAC - ELECTRON & POSITRON								
					To Low		1.51.51	
					Conductivit v Water	to Chilled Water		load to Air 22 of
					y water	water	NUV	22.00
							Power	
			Total	Average	Heat	Heat	fraction	
			Heat	Heat	Load to	Load to	to	Power to
	Quantity		Load	Load	Water	Water	Tunnel	Tunnel
Components	Per 36m	Location	(KW)	(KW)	(KW)	(KW)	Air (0-1)	Air (KW)
Non-RF Components								
LCW Skid Pump 1 per 4 rf -Motor/Feeder Loss	0.25	Service Tunnel	0.60	0.60	0	0	1.00	0.00
I^2R Loss and Motor Loss (misc)	1	Service Tunnel	8.99	8.22	0	0	1.00	8.22
Fancoils (5 ton Chilled Water) 1.5 Hp	2	Service Tunnel	2.91	2.91	0	0		
Rack Water Skid	0.25	Service Tunnel	0.20	0.20	0	0	1.00	0.20
Lighting Heat Dissipation ~1.3W/sf		Service Tunnel	1.65	1.65	0	0	1.00	1.65
AC Pwr Transformer 34.548 kV	0.25	Service Tunnel	2.00	2.00	1.50	0	0.25	0.50
Emerg. AC Pwr Transformer 34.548 kV RF Components		Service Tunnel	1.00	1.00	0	0	1.00	1.00
RF Charging Supply 34.5 Kv AC-8KV DC	1/36 m	Service Tunnel	4.0	4.0	2.8	0	0.3	1.2
Switching power supply 4kV 50kW	1/36 m	Service Tunnel	7.5	7.5	4.5	0	0.4	3.0
Modulator	1/36 m	Service Tunnel	7.5	7.5	4.5	0	0.4	3.0
Pulse Transformer	1/36 m	Service Tunnel	1.0	1.0	0.7	0	0.3	0.3
Klystron Socket Tank / Gun	1/36 m	Service Tunnel	1.0	1.0	o.8	0	0.2	0.2
Klystron Focusing Coil (Solenoid)	1/36 m	Service Tunnel		4.0	5-5	0	0.1	0.4
Klystron Collector	1/36 m	Service Tunnel	58.9	47.2	45.8	0	0.0	1.4
Klystron Body & Windows	1/36 m	Service Tunnel			4.2	0		
Relay Racks (Instrument Racks)	1/36 m	Service Tunnel	10.0	10.0	0	11.5	-0.2	-1.5
	2/36 m	Service Tunnel			0			0.0
	1/36 m	Service Tunnel			0			1.166
RF Distribution (Attenuators, Loads, Waveguide,	1/36 m	Penetration			0.676			
Circulators all in series connection)	1/36 m	Beam Tunnel			0.0	0	(5-9
	26/36 m	Beam Tunnel			2.49	0		0.0
	24/36 m	Beam Tunnel			30.05			0.0
Subtotal RF unit Only			90	82	102.0			
Total RF			107	99	103.5	11.5		21.4

1. Racks	11.5 kW
2. PR & Motor Loss	8.2 kW
3. Waveguides (B.T.)	5.9 kW
4. Switching P.S.	3.0 kW
5. Modulator	3.0 kW

Total of top 5 = 31.6 kW 82% of Air/Chilled Water Loads

But are these loads real and cannot we reduce?...