

ILC Main Linac Cooling-Water System Cost Reduction Studies

- Interim Report -

Atsushi Enomoto (KEK)

ILC GDE Meeting 5 June 2008, JINR (Dubna)

Priority of study on process cooling water

Proportion of process cooling water *in total infrastructure (excl. survey)*

Schematic Understanding of ML Cooling System & Costs

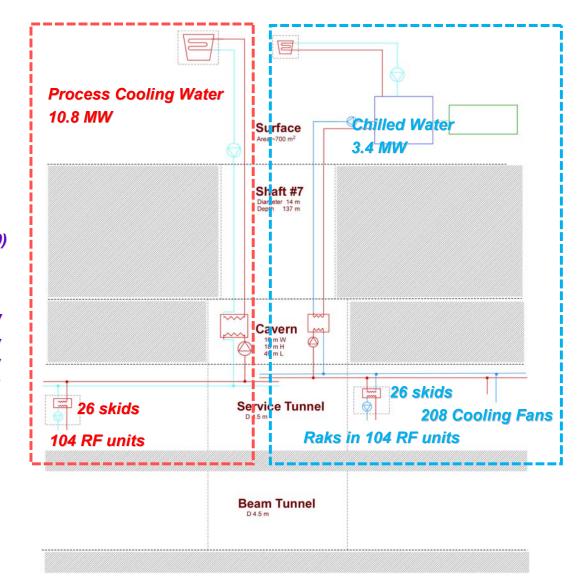
Focus on - Shaft #7 Area -

Geometry of Facility

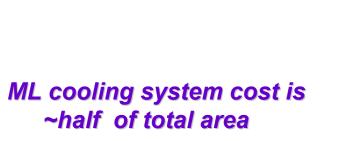
 Cooling Tower building ~700 m2

 Shaft
 14 mφ, 137 m (450 ft) depth

 Cavern
 16 m(W), 18 m(H), 49 m(L)

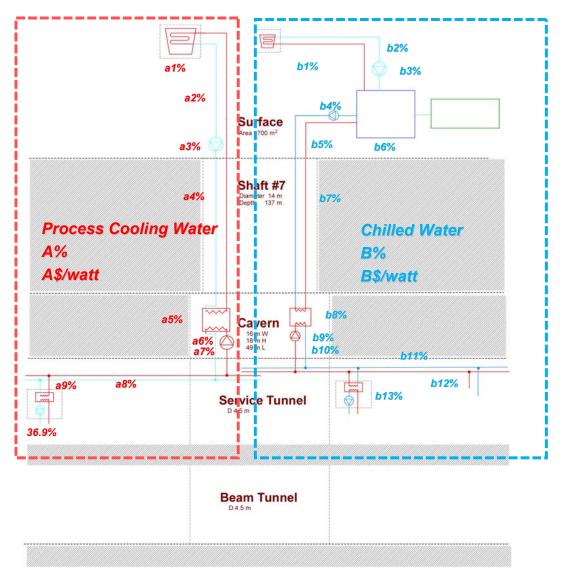

 Tunnel
 4.5 mφ, ~4030 m (1550 + 2480)

RF Unit Heat Loads


To Low-Conductivity Water	104 kW
To Chilled Water	21.2 kW
Rack	11.5 kW
Service Tunnel Air	9.7 kW
To Beam Tunnel Air	5.9 kW

Shaft #7 Total Heat Loads

Number of RF units	104
Low-Conductivity Water	10.8 MW
Chilled Water	2.2 MW


Cost Profile

Process Cooling Water piping cost is expensive, including high percentage of LCW skids system ()

Low cost performance of Chilled water system

2008/6/5

Targets of study

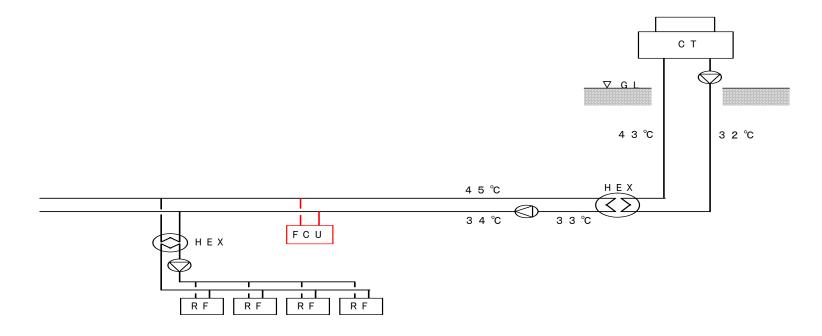
1. Increase of ΔT (11 °C \rightarrow 20 °C) **2.** Elimination of chilled water

Increase of ΔT from 11 °C to 20 °C

This decreases water flow, - small pipe size,

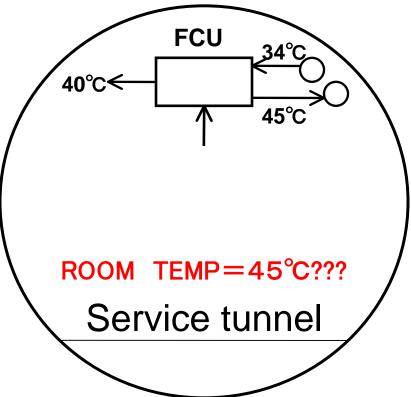
Increase return pipe temperature

Conventional Facilities and Siting


Very preliminary results

- Cost reduction in approx. 7%

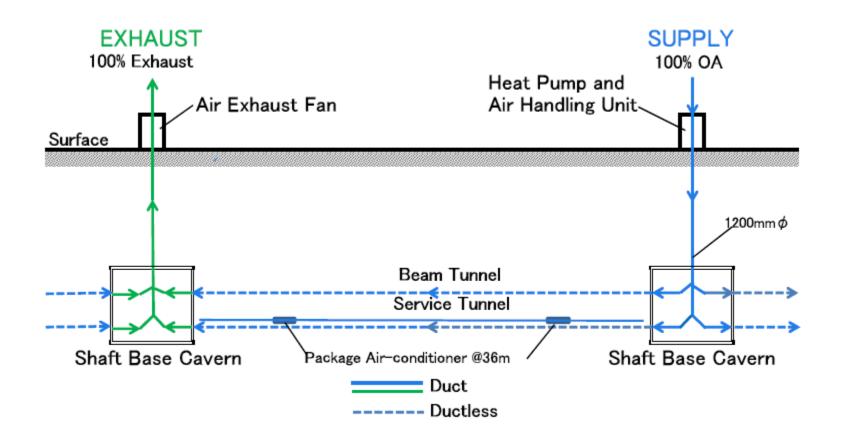
Elimination of Chilled Water


- Simplify the system and reduces the cost
- Affects cooling of the service tunnel

Expected circumstance

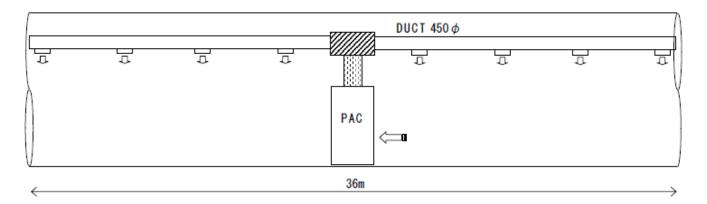
> discussed later

Global Design Effort



:lr

İİL


Alternative HVAC scheme for tunnels

- supply & exhaust @ every other shafts


Alternative HVAC system for service tunnel

- Provision of package air-conditioner to replace fan coil unit @ 36 m

- Service tunnel temperature : 25 °C~28 °C
- Space for package units must be secured
- Further cost study must be done

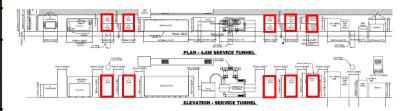
Size and space of package unit

Heat loads to Air/ChW

We had an RDR design and proposed alternative but coming back to the criteria for heat loads

ilc Ilc Global Design Effort

Conventional Facilities and Siting


Top-5 heat loads to Air/ChW

Dec 14 2007

WATER AND AIR HEAT LOAD (all LCW) and 9-8-9 ML

MAIN LINAC - ELECTRON & POSITRON								
					To Low			
					Conductivit	to Chilled	keith Jobe	
					y Water	Water	NOV	22.06
							Power	
			Total	Average	Heat	Heat	fraction	
			Heat	Heat	Load to	Load to	to	Power
	Quantity		Load	Load	Water	Water	Tunnel	Tunn
Components	Per 36m	Location	(KW)	(KW)	(KW)	(KW)	Air (0-1)	Air (K
Non-RF Components								
LCW Skid Pump 1 per 4 rf -Motor/Feeder Loss	0.25	Service Tunnel	0.60	0.60	0	0	1.00	
I^2R Loss and Motor Loss (misc)	1	Service Tunnel	8.99	8.22	0	0	1.00	8.22
Fancoils (5 ton Chilled Water) 1.5 Hp	2	Service Tunnel	2.91	2.91	0	0		
Rack Water Skid	0.25	Service Tunnel	0.20	0.20	0	0	1.00	0.20
Lighting Heat Dissipation ~1.3W/sf		Service Tunnel	1.65	1.65	0	0	1.00	1.65
AC Pwr Transformer 34.548 kV	0.25	Service Tunnel	2.00	2.00	1.50	0	0.25	0.50
Emerg. AC Pwr Transformer 34.548 kV		Service Tunnel	1.00	1.00	0	0	1.00	1.00
RF Components			-					
RF Charging Supply 34.5 Kv AC-8KV DC	1/36 m	Service Tunnel	4.0	4.0	2.8	0	0.3	1.2
Switching power supply 4kV 5okW	1/36 m	Service Tunnel	7.5	7.5	4.5	0	0.4	3.0
Modulator	1/36 m	Service Tunnel	7.5	7.5	4.5	0	0.4	3.0
Pulse Transformer	1/36 m	Service Tunnel	1.0	1.0	0.7	0	0.3	0.3
Klystron Socket Tank / Gun	1/36 m	Service Tunnel	1.0	1.0	o.8	0	0.2	0.2
Klystron Focusing Coil (Solenoid)	1/36 m	Service Tunnel		4.0	5.5	0	0.1	0.4
Klystron Collector	1/36 m	Service Tunnel	58.9	(7.7	45.8	0		
Klystron Body & Windows	1/36 m	Service Tunnel	50.9	47.2	4.2	0	0.0	1.4
Relay Racks (Instrument Racks)	1/36 m	Service Tunnel	10.0	10.0	0	11.5	-0.2	-1.
	2/36 m	Service Tunnel			0			0.0
	1/36 m	Service Tunnel			0			1.16
RF Distribution (Attenuators, Loads, Waveguide,	1/36 m	Penetration			0.676			
Circulators all in series connection)	1/36 m	Beam Tunnel			0.0	0	(5-9
	26/36 m	Beam Tunnel			2.49	0		0.0
	24/36 m	Beam Tunnel			30.05			0.0
Subtotal RF unit Only			90	82	102.0			
Total RF			107	99	103.5	11.5		21

Total Heat load to Air/Chilled water in service tunnel (per RF)	32.9
Total Heat load to LCW (per RF)	103.5
Total Heat load to air in beam tunnel (ignore rock contribution for now)	5.9

1. Racks	11.5 kW
2. I ² R & Motor Loss	8.2 kW
3. Waveguides (B.T.)	5.9 kW
4. Switching P.S.	3.0 kW
5. Modulator	3.0 kW

Total of top 5 = 31.6 kW 82% of Air/Chilled Water Loads

But are these loads real and cannot we reduce?...

Parametric Consideration

To understand heat loads to air, lets see how are heat diffusion and conduction..

Heat Diffusion from Plates

 $q(W/m^2) = U(\theta - \theta_a)$ U: Heat transfer rate (W/m²/K) Heat diffusion by Radiation and Convection θ: Equipment temperature (C) θ_a : Ambient temperature (C) *T*_a ambient temperature *q* (W/m²) $U = (R_{se} + R_{i})^{-1}$ surface heat registance R_{se} atomsphere *T*_{se} surface temperature R_{so}: Surface heat resistance R ; : Heat resistance of the material plate (λ) heat registance R_i $R_{se} = (h_r + h_{cv})^{-1}$ 7 ----- equipment temperature h_r: HTE by "Radiation" h_r: HTE by "Convection" $h_r = \varepsilon \sigma (T_{so}^4 - T_{s}^4) / (T_{so} - T_{s})$ E: Efficiency due to the material, ex. 0.30 (stainless steel), 0.94 (cement, cloth) σ: Stefan-Boltsmann constant, 5.67 x 10⁻⁸ Wm⁻²K⁻⁴ T_{se} : Surface temperature (K), T_a : Ambient temperature (K) **3.26**Δθ^{0.25}((w+0.348)/0.348)^{0.5} upward-directed surface $h_{cv} = \begin{bmatrix} 2.28 \varDelta \theta^{0.25} ((w+0.348)/0.348)^{0.5} \\ 2.56 \varDelta \theta^{0.25} ((w+0.348)/0.348)^{0.5} \end{bmatrix}$ doward-directed surface vertical planes ($\Delta \theta > 10K$) (3.61+0.094∆θ)^{0.25}((w+0.348)/0.348)^{0.5} vertical planes ($\Delta\theta$ <10K) $\Delta \theta = |T_{so} - T_{a}|$ w: Air flow velocity (m/s) $R_i = d/\lambda$ d: Thickness of the material (m)

 λ : Thermal conductivity of the material (Wm⁻¹K⁻¹)

The order of "Surface Heat Resistance"

- For T_a (ambient temperature) 29 C
- and T_{se} (surface temperature) 34~54 C

(1) Heat Radiation assume $\varepsilon = 1.0$ $h_r = \varepsilon \sigma (T_{se}^4 - T_a^4) / (T_{se} - T_a) = 6.4 \sim 7.1 (Wm^{-2}K^{-1})$ (2) Air convection assume w = 0.45 m/s (27 m/min) $h_{cv} = 3.26 \Delta \theta^{0.25} ((w+0.348)/0.348)^{0.5} = 7.4 \sim 11.0 (Wm^{-2}K^{-1})$ $h_{cv} = 2.56 \Delta \theta^{0.25} ((w+0.348)/0.348)^{0.5} = 5.8 \sim 8.7 (Wm^{-2}K^{-1})$ $vertical planes (\Delta \theta > 10 \text{ K})$

(3) Overall heat diffusion from equipment surfaces

assume ε = 1.0 and w = 0.45 m/s (27 m/min)

 $h = 12 \sim 18 W/m^2/K$ (for $\Delta T = 5 \sim 25 deg$)

Suppress the Heat load to Air!

Heat load to air by RF equipment when LCW used

Estimated diffusion when $\Delta T = 5 \text{ deg}$, $\varepsilon = 1$, w = 0.45 m/s

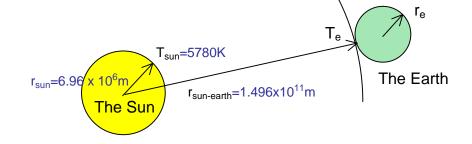
T: Equipment temperature (34 C)

T_a: Ambient temperature (29 C)

		L and to	Estima	ited Heat D	Difusion
	Heat Load	Load to Air/Chilled Water (@present)	Top panel (m2)	Side	Heat difussion (kW) @∆T=5de
1 Racks	11.5	11.5	8.8	56.7	4.1
2 I ² R & Motor Loss	8.22	8.2			0.0
3 Waveguides (B.T.)	5.9	5.9	24.6	45.9	4.5
4 Switching P.S.	7.5	3	3.0	14.5	1.1
5 Modulator	7.5	3	4.6	21.3	1.6
Total of top 5	40.62	31.6			11.3

Effects of Heat Insulator

----- 釈迦に説法 (Preaching Budda) -----


Heat radiation and convection assume $\varepsilon = 1.0$ and w = 0.45 m/s (27 m/min) $h = 12 \sim 18 W/m^2/K$ (for $\Delta T = 5 \sim 25 deg$) $R_{\rm se} = 0.056 \sim 0.083 \ W^{-1} m^2 K$ Heat resistance of insulator (1 mm) $R_{i} = d/\lambda = 0.020 W^{-1}m^{2}K$ d: Thickness of the material (0.001 m) λ : Thermal conductivity of insulator (0.05 Wm⁻¹K⁻¹) - A few mm of heat insulator is comparable to surface resistance A few cm of heat insulator is usually enough for completeness of water cooling system

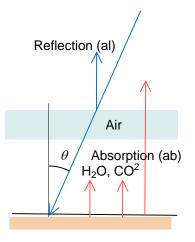
Ambient Temperatures

Surface and Underground

Earth Temperature

Solar constant

 $q_{sun} = \sigma T_{sun}^{4} \times 4\pi r_{sun}^{2} / 4\pi r_{sun-earth}^{2} = 1370 W/m^{2}$


Temperature of the earth

 $q_{sun} \pi r_e^2 = \sigma T_e^4 \times 4\pi r_e^2$ (equilibrium)

→ T_e = 279 K (6 C)

Temperture on the ground depends on site

 $q_{sun} \propto \cos\theta (1-al) = \sigma T_g^4 (1-ab)$ (equilibrium) $\cos\theta = \sin\Theta\cos\omega_d t\cos\omega_y t + \sin\Theta\sin\omega_d\cos\mu\sin\omega_y t + \cos\Theta\sin\mu\cos\omega_y t$ Θ : latitude, μ =23.5 deg, ω_d =2 π /day, ω_y =2 π /year

Temperature affects surface cooling towers

	d	m	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	sep	Oct	Nov	Dec		
Moscow-Dolgoprudnyj	55			-6.7	-1.4	6.4	12.8	17.1	18.4	16.5	10.8	5.0	-1.6	-5.5	5.3	1971-2000
Chicago-Ohare	41	59	-5.6	-2.8	3.0	9.0	15.1	20.4	23.4	22.4	18.0	11.4	4.3	-2.2	9.7	1971-1999
Zurich-Town	47	23	0.3	1.3	5.1	8.1	12.8	15.6	18.0	17.7	14.0	9.3	4.1	1.5	9.0	1971-2000
Berlin-tempelhof	52	28	0.8	1.5	4.9	8.7	14.2	17.2	19.2	18.8	14.5	9.6	4.9	2.0	9.7	1971-2000
Tokyo	35	41	5.8	6.1	8.9	14.4	18.7	21.8	25.4	27.1	23.5	18.2	13.0	8.4	15.9	1971-2000
Place	Altit	ude		Relative Humidity Monthly Average								Annual Average				
	d	m	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	sep	Oct	Nov	Dec	/ Woruge	
Moscow-Dolgoprudnyj	55	50	80	76	73	67	64	63	69	74	78	79	82	82	74	1961-1967
Chicago-Ohare	41	59	72	72	70	65	64	66	69	71	71	69	73	76	70	1961-1990
Zurich-Town	47	23	85	80	75	72	73	74	73	77	81	84	84	85	79	1961-1990
Berlin-tempelhof	52	28	89	83	76	68	64	61	65	69	73	79	87	89	75	1961-1967
Tokyo	35	41	50	51	57	62	66	73	75	72	72	66	60	53	63	1971-2000

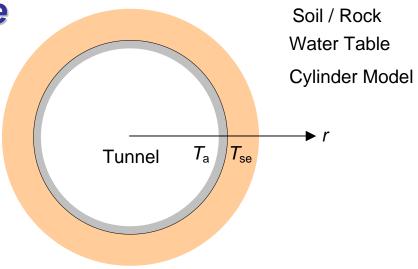
Detail design and comparison of site difference are the next step after the system optimizaton.

Beam Tunnel Temperature

Tunnel Air temperature without wall loss

ΔT = P/(Fc) *P:heat load [W], F: air flow [g/s],*

c: specific heat capacity [J/(gK)]


When,

P = 5.9 kW x 104 = 0.61 MW, $F = 7.16 \text{ m}^3\text{/s} (=\pi \text{ x } 2.25^2 \text{ m}^2 \text{ x } 0.45 \text{ m/s})$ $\rho = 1184 \text{ g/m}^3$ c = 1.020 J/(gK) (hum~50%) $\Delta T \sim 70 \text{ deg!}$

```
Heat Diffusion into tunnel wall q = h \Delta T
```

Assuming the tunnel surface heat resistance (1/h) h = 12 ~ 18 W/m²/K (for ΔT = 5 ~ 25 deg)

S = π x 4.5 m x 36 m ~ 500 m² (Tunnel wall / RF init) Sh = 6 ~ 9 kW /K

How is Underground Temperature ?

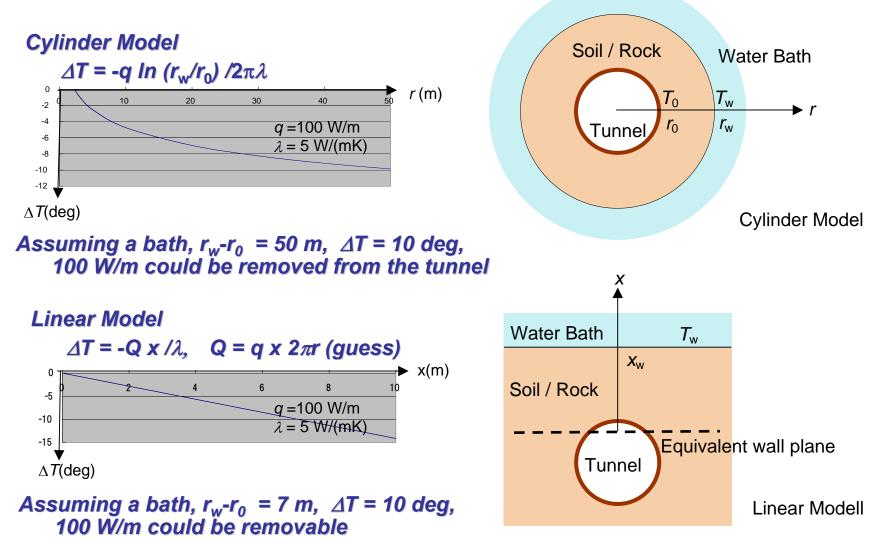
Depend on the geology

Deeper than 10 m, the temperature is constant

Geothermal heat flow forward the surface ground ~40 x $10^{12} / 4\pi (6.4 \times 10^6)^2 = \sim 0.08 W/m^2$

the total geothermal heat of the earth (W) / the surface area of the Earth (m²)

Temperature rise in deep underground


~0.08 / (2~8) = 0.01~0.04 K/m

Heat flow (W/m²) / the thermal conductivity (W/mK)

il Global Design Effort

Conventional Facilities and Siting

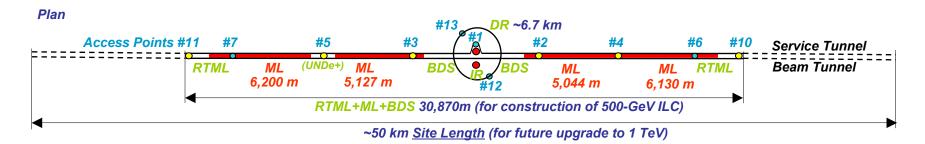
How is tunnel wall Temperature ?

Summary

II Global Design Effort

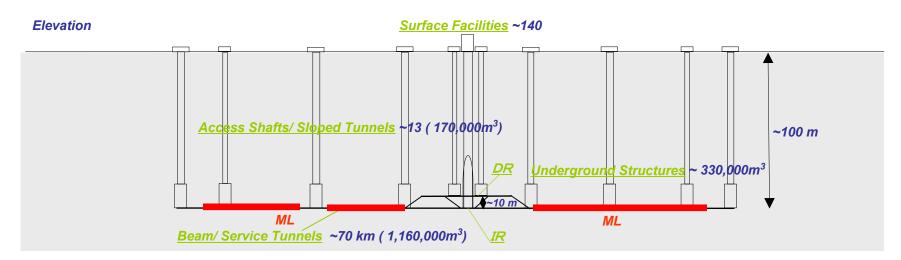
:lr

- (1) Delta T increase and Chilled Water Decrease are potential measures to reduce cooling costs.
- (2) Effect of high *∆*T to room T may be suppressed by insulator with relative low cost.
- (3) Effect of high *∆*T to equipment and beam instability should be studied separately.
- (4) Alternative air cooling system using package air conditioner is under consideration.
- (5) More investigation and effort to decrease heat load to air are necessary.
- (6) Cooling effect by tunnel wall depends on geology of the site, though an order of ~100 W/m may be cooled under some conditions.
- (7) LCW skid loop with complicated piping is another impact to raise cooling cost but the study is a subject to be solved hereafter.


Appendix

RF unit configuration

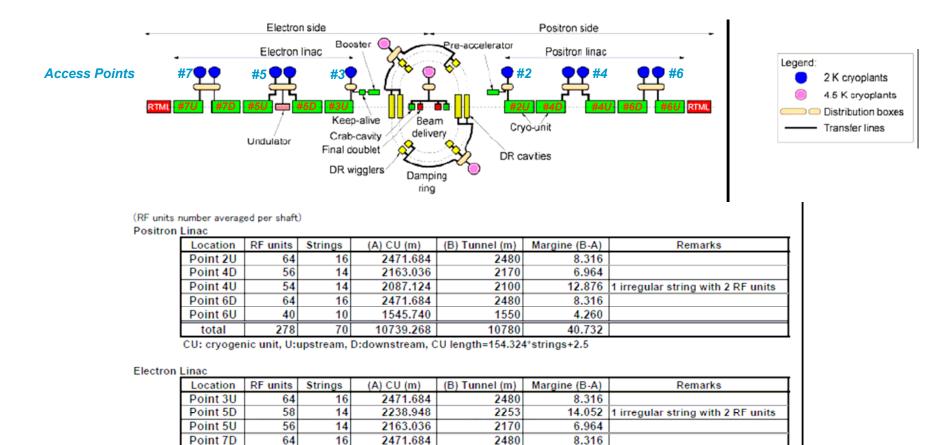
ilc IIC Global Design Effort


ILC Tunnel Complex and Access Points

• 31 km long Site Length with 11 access points for 500-GeV machine

Main Linac Site Length = 22,501 km (72.9% of 30,870m)

Main Linac Tunnel Length = 44,214 km (61.4% of 72,016m)


Main Linac Configuration

Point 7U

total

40

282

CU: cryogenic unit, U:upstream, D:downstream, CU length=154.324*strings+2.5

1545.740

10891.092

10

70

1550

10933

4.260

41.908

ilc Global Design Effort

Main Linac RF units

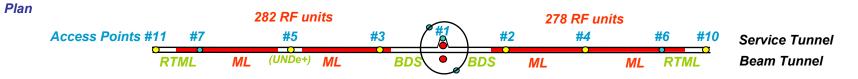


TABLE 2.6-2 RF unit parameters.

Value	Units
82.8	%
10	MW
65	%
7	%
26	
1.038	m
31.5	MV/m
33.0	MV/m
293.7	kW
1.565	ms
59.8	kW
36.9	kW
	82.8 10 65 7 26 1.038 31.5 33.0 293.7 1.565 59.8

TABLE 2.6-3

RF unit cryogenic heat loads and installed AC cryogenic plant power to remove the heat.

	40–80 K		5	-8 K		Total	
	Static	Dynamic	Static	Dynamic	Static	Dynamic	
Heat load (W)	177.6	270.3	31.7	12.5	5.1	29.0	
Installed power (kW)	4.4	6.2	9.6	3.5	8.1	28.5	60.4

- Main Linac uses 560 RF units.
- 4 more units are used in electron linac side to compensate energy loss by undulator for positron production.

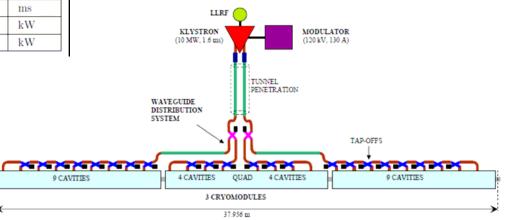


TABLE 2.6-5

AC power consumption of the two main linacs.

System	AC Power (MW)
Modulators	81.4
Other RF system and controls	8.4
Conventional facilities	25.7
Cryogenic	33.8
Total	149.3

ILC GDE Meeting (JINR, Dubna)