

- Introduction of the DEPFET collaboration and MPI Semiconductor Laboratory
- DEPFET in a nutshell
- Current achievements
- Future Plans

	DEPFET/Ladder Sim. and Irrad.	Auxiliary ASICs Development	System Development	System Tests and Test Beams
Aachen			Х	
Bonn		Х	Х	Х
Karlsruhe	Х			
Mannheim		Х	Х	Х
Munich	Х			Х
Prague			Х	Х
Valencia			Х	Х

- Founded in 1992, since 2000 at the Siemens Campus in Munich
- ~60 Scientists, Engineers, Technicians, Students design, produce, and test ...
- ...silicon detectors (CCD, APS, SiPM..) for experiments in HEP, X-ray astronomy, synchrotron radiation ...

- fully depleted sensitive volume, charge collection by drift
- Charge collection in "off" state, read out on demand
- internal amplification \rightarrow q-I conversion, scales with gate length and bias current

- select row with external gate, read current, clear DEPFET, read current again \rightarrow the difference is the signal
- Low power consumption
- two different auxiliary ASICs needed
- limited frame rate

SiD, Phone Meeting November 9, 2007

cap. load at the f/e adds noise

V_{CLEAR, ON}

V_{CLEAR-Control}

drain 🕁

0 suppression

 $V_{\text{CLEAR, OFF}}$

DRAIN

GATE OFF

ILC VXD baseline design

Just as a starting point for the R&D!

- 5 layer, old TESLA layout
- 10 and 25 cm long ladders read out at the ends
- 24 micron pixel
- design goal 0.1% X₀ per layer in the sens. region

Strategy to cope with the background:

- read ~20 times per train
- store data on ladder
- transfer the data off ladder in the train pause
 → row rate of 40 MHz
- read two rows in parallel, doubles # r/o channels but:

 \rightarrow row rate 20 MHz \odot

In Summary: Achievements

- ✓ Prototype System with DEPFETs (450µm), CURO and Switcher
 ✓ test beam @ CERN:
 - ✓ S/N≈110 @ 450 μ m \leftarrow → goal S/N ≈ 20-40 @ 50 μ m
 - ✓ sample-clear-sample 320 ns \leftarrow → goal 50 ns
 - ✓ s.p. res. 1.3 μ m @ 450 μ m \leftarrow → goal ≈ 4 μ m @ 50 μ m
- \checkmark Thinning technology established, thickness can be adjusted to the needs of the experiment (~20 μm ... ~100 μm)
- $\checkmark~$ radiation tolerance tested with single pixel structures up to 1 Mrad and ${\sim}10^{12}~n_{eq}/cm^2$
- ✓ Simulations show that the present DEPFET concept can meet the challenging requirements at the ILC VXD.
- ✓ Production of 2nd iteration of DEPFETs was finished summer 2007
- ✓ New Switcher3 chips tested and functional
- ✓ New r/o chips DCD designed for read-out of large matrices are under test

The challenge: read-out speed in long ladders!

1. Row wise read-out

 row wise CDS with the r/o chips at the short side of the ladder

<u>Advantage</u>

- Low power consumption!
- No advanced interconnection technologies needed

<u>Disadvantage</u>

- limited frame rate
- high capacitive load (long drain lines) at the input

3. Combination of those two

- subdivide large arrays into smaller units
 - \rightarrow smaller cap. load
 - \rightarrow more relaxed row rate
- challenging interconnection (\rightarrow "3D"?)
 - → find optimum for a specific application balancing the pros and cons under consideration for the ILC VXD

2. Hybrid-pixel-like approach: one amp. per pixel

<u>Advantage</u>

fast! (~ns), frame rate comparable with hybrid pixels

<u>Disadvantage</u>

- challenging interconnection between sensor and r/o chip
- high power consumption

intended for the focal plane at the XFEL

Why SiD VXD layout for the DEPFET?

- Main difference is long barrel $\leftarrow \rightarrow$ short barrel with endcap
- in layers 2..5: 25 cm ladder \rightarrow 12.5 cm ladder
- lower C_{load} at the input, relaxed speed requirements in these layers

 R_{in} = 14 mm, R_{out} =71mm

Why DEPFET for the SiD?

- wafer scale sensors (150 mm) in barrel and discs
- 1 ladder/wafer or 1/2 or 1/4 disc per wafer, no stiching needed
- thinned all-silicon ladders or discs with or without supporting frames
- DEPFET is an active pixel sensor, first amplification in pixel → good candidate for 3D integrated detector systems.
- MacroPixels (DEPFET + Drift Detector) could be a natural extension of the VXD technology into a pixelated tracker...

Potential Issues

- insensitive area at the end of the ladder needed for the r/o and data transmitting ASICs \rightarrow 3D integration could help here
- additional material at the end of barrels (services)
- concerning the discs: it is just an idea so far, we need a design study to come to sound proposal...the layout is pretty tricky!

- ✓ MC studies: short barrels and discs \leftarrow → long barrels
- Mechanics and all-silicon VXD: We can certainly make some mechanical samples for the construction of a mechanical model.
- ✓ We started already a project to see the feasibility of the 3D integration approach. Sharing the experience and results with the group at FNAL could be very helpful.

Simulation: LDC Geometry description

Sensitive layer thickness = $50 \ \mu m$ Pixel size = $25 \times 25 \ \mu m^2$

	Radius (cm)	Ladders	Length (cm)
1	1.5	8	10.0
2	2.6	8	2×12.5
3	3.8	12	2×12.5
4	4.9	16	2×12.5
5	6.0	20	2×12.5

sensor y 50µm

Material up to first layer : beam pipe (500 µm beryllium)

