

- Introduction of the DEPFET collaboration and MPI Semiconductor Laboratory
- DEPFET in a nutshell
- Current achievements
- Future Plans

	DEPFET/Ladder Sim. and Irrad.	Auxiliary ASICs Development	System Development	System Tests and Test Beams
Aachen			X	
Bonn		X	X	X
Karlsruhe	X			X
Mannheim		X	X	X
Munich	X			X
Prague			X	X
Valencia			X	X

- The MPI Semiconductor Laboratory (HalbLeiterLabor)

- Founded in 1992, since 2000 at the Siemens Campus in Munich
- ~60 Scientists, Engineers, Technicians, Students design, produce, and test ...
- ..silicon detectors (CCD, APS, SiPM..) for experiments in HEP, X-ray astronomy, synchrotron radiation ...

- Inside the HLL

~ 800m² Clean room with a full 150 mm process line, including mounting, bonding, and test..

- DEPFET Principle

DEpleted P-channel FET

- fully depleted sensitive volume, charge collection by drift
- Charge collection in "off" state, read out on demand
- internal amplification \rightarrow q-I conversion, scales with gate length and bias current

- Internal amplification g_{q}

$$
g_{q}=\frac{d I_{D}}{d Q}=-\frac{\mu_{p}}{L^{2}}\left(V_{G S}-V_{t h}\right) \quad \text { (neglecting short channel effects) }
$$

As long as noise is dominated by r / o chip $\rightarrow \mathrm{S} / \mathrm{N}$ linear with g_{q}

- Overview: Types and Applications


```
X-ray imaging spectroscopy }->\mathrm{ XEUS
```

- pixel size: 100 $\mu \mathrm{m}$
- r/o time per row: $2.5 \mu \mathrm{~s}$
- Noise: ≈ 4 el ENC

Particle tracking \rightarrow vertex detector at ILC

- pixel size: 24 um
- r/o time per row: 25 ns
- Noise: ≈ 100 el ENC
- thin detectors: $\approx 50 \mu \mathrm{~m}$

DEPFET MacroPixel
X-ray (imaging) spectroscopy
\rightarrow BepiColombo, SimbolX

- pixel size: 100 s of $\mu \mathrm{m}$

- DEPFET Array - read-out at the ILC

Row wise read-out ("rolling shutter")

- select row with external gate, read current, clear DEPFET, read current again \rightarrow the difference is the signal
- Low power consumption

- two different auxiliary ASICs needed
- limited frame rate
- cap. load at the f/e adds noise

- ILC VXD baseline design

- 5 layer, old TESLA layout

10 and 25 cm long ladders read out at the ends

- 24 micron pixel
- design goal $0.1 \% X_{0}$ per layer in the sens. region

Strategy to cope with the background:

- read ~20 times per train
- store data on ladder
- transfer the data off ladder in the train pause

$$
\rightarrow \text { row rate of } 40 \mathrm{MHz}
$$

- read two rows in parallel, doubles \# r/o channels but:

$$
\rightarrow \text { row rate } 20 \mathrm{MHz} \text { © }
$$

- ILC Prototype System

```
Current Readout
```

CUROII
 DEPFET Matrix
64×128 pixels, $33 \times 23.75 \mathrm{\mu m}^{2}$

Clear Switcher
$\checkmark 2$ analog MUX outputs with
$\checkmark 64$ channels each
\checkmark Can switch up to 25 V
\checkmark current based 128 channel readout chip
$\checkmark 0.8 \mu \mathrm{~m}$ AMS HV technology

- In Summary: Achievements

\checkmark Prototype System with DEPFETs (450 $\mu \mathrm{m}$), CURO and Switcher

\checkmark test beam @ CERN:
$\checkmark \quad \mathrm{S} / \mathrm{N} \approx 110$ @ $450 \mu \mathrm{~m} \leftrightarrow$ goal $\mathrm{S} / \mathrm{N} \approx 20-40$ @ $50 \mu \mathrm{~m}$
\checkmark sample-clear-sample $320 \mathrm{~ns} \leftrightarrow \rightarrow$ goal 50 ns
\checkmark s.p. res. $1.3 \mu \mathrm{~m}$ @ $450 \mu \mathrm{~m} \leftrightarrow \rightarrow$ goal $\approx 4 \mu \mathrm{~m}$ @ $50 \mu \mathrm{~m}$
\checkmark Thinning technology established, thickness can be adjusted to the needs of the experiment ($\sim 20 \mu \mathrm{~m} . . . \sim 100 \mu \mathrm{~m}$)
\checkmark radiation tolerance tested with single pixel structures up to 1 Mrad and $\sim 10^{12} \mathrm{n}_{\mathrm{eq}} / \mathrm{cm}^{2}$
\checkmark Simulations show that the present DEPFET concept can meet the challenging requirements at the ILC VXD.
\checkmark Production of 2nd iteration of DEPFETs was finished summer 2007
\checkmark New Switcher3 chips tested and functional
\checkmark New r/o chips DCD designed for read-out of large matrices are under test

- The challenge: read-out speed in long ladders!

1. Row wise read-out

- row wise CDS with the r/o chips at the short side of the ladder

Advantage

- Low power consumption!
- No advanced interconnection technologies needed

Disadvantage

- limited frame rate
- high capacitive load (long drain lines) at the input

2. Hybrid-pixel-like approach: one amp. per pixel

Advantage

- fast! (~ns), frame rate comparable with hybrid pixels

> Disadvantage

- challenging interconnection between sensor and r/o chip
- high power consumption
intended for the focal plane at the XFEL

- Reasons...

Why SiD VXD layout for the DEPFET?

- Main difference is long barrel \leftrightarrow short barrel with endcap
- in layers 2..5: 25 cm ladder $\rightarrow 12.5 \mathrm{~cm}$ ladder
- lower $\mathrm{C}_{\text {load }}$ at the input, relaxed speed requirements in these layers

Why DEPFET for the SiD?

$\mathrm{R}_{\text {in }}=14 \mathrm{~mm}, \mathrm{R}_{\text {out }}=71 \mathrm{~mm}$

- wafer scale sensors (150 mm) in barrel and discs
- 1 ladder/wafer or $1 / 2$ or $1 / 4$ disc per wafer, no stiching needed
- thinned all-silicon ladders or discs with or without supporting frames
- DEPFET is an active pixel sensor, first amplification in pixel \rightarrow good candidate for 3D integrated detector systems.
- MacroPixels (DEPFET + Drift Detector) could be a natural extension of the VXD technology into a pixelated tracker...

Potential Issues

- insensitive area at the end of the ladder needed for the $r / 0$ and data transmitting ASICs \rightarrow 3D integration could help here
- additional material at the end of barrels (services)
- concerning the discs: it is just an idea so far, we need a design study to come to sound proposal...the layout is pretty tricky!

- Possible Areas of Collaboration

$\checkmark \quad$ MC studies: short barrels and discs $\leftrightarrow \rightarrow$ long barrels
$\checkmark \quad$ Mechanics and all-silicon VXD: We can certainly make some mechanical samples for the construction of a mechanical model.
$\checkmark \quad$ We started already a project to see the feasibility of the 3D integration approach. Sharing the experience and results with the group at FNAL could be very helpful.

Backup

a) oxidation and back side implant

\square
Handle <100> Wafer

b) wafer bonding and grinding/polishing of top wafer
c) process \rightarrow passivation

d) anisotropic deep etching opens "windows" in handle wafer

$$
\begin{aligned}
& \text { New: } \begin{array}{l}
\text { 150mm } \varnothing \text { wafers! } \\
\text { New: Wafer bonding and thinning in industry } \\
\text { New: Compatibility with the main production line tested } \\
\text { So far: mechanical samples \& test structures on SOI wafers } \\
\text { Plans 2007: production of thin }(50,100 \text {, and } 150 \mu \mathrm{~m}) \text { ATLAS } \\
\text { pixel sensors for SLHC upgrade }
\end{array}
\end{aligned}
$$

- PiN Diodes on thin Silicon

reverse currents at 50 V bias: test-ilc-1 , Wafer 5

- Thinning : mechanical samples

- Simulation: LDC Geometry description

Sensitive layer thickness $=50 \mu \mathrm{~m}$
Pixel size $=25 \times 25 \mu \mathrm{~m}^{2}$

$\left.$| | Radius
 (cm) | Ladders |
| :---: | ---: | :---: | | Length |
| :---: |
| (cm) | \right\rvert\,

Material up to first layer : beam pipe ($500 \mu \mathrm{~m}$ beryllium)

- MC Studies

Spatial resolution for 50 mm thick $25 \times 25 \mathrm{~mm}^{2}$ pixels: $\quad<3.5 \mathrm{~mm}(\mathrm{r}-\varphi),<4.0 \mathrm{~mm}(\mathrm{z})$

Impact parameter resolution (5 layers, frames, 500 mm Be beam pipe)

$$
\sigma(\mathrm{IP})_{r-\phi}=4.5 \mu \mathrm{~m} \oplus \frac{8.7 \mu \mathrm{~m}}{\mathrm{p}(\mathrm{GeV} / \mathrm{c}) \sin ^{3 / 2} \theta}
$$

ILC requirements fulfilled

