Status of DHCAL Slice Test Data Analysis

Lei Xia ANL-HEP

All results preliminary

RPC DHCAL Slice Test: T970 MTBF - FNAL

Back to ANL, continue running...

Data set

• Beam data

- Muon runs ('calibration run', RPC eff/pad multiplicity vs HV/Thr)
 - 120 GeV proton beam hitting beam stop
 - Steel (16mm) + copper (4mm) absorber
- Positron runs ('EM shower')
 - 1,2,4,8,16 GeV/c secondary beam (Čerenkov trigger)
 - Steel (16mm) + copper (4mm) absorber
- Pion/muon runs ('hadronic shower/MIP track')
 - 1,2,4,8,16 GeV/c secondary beam (veto on Čerenkov trigger)
 - With/without additional Fe absorber in front of stack
 - Steel (16mm) + copper (4mm) absorber
- Proton runs ('rate measurement')
 - 120 GeV primary beam
 - Scan beam rate (from lowest possible rate to ~30k/spill)
 - PVC 'absorber' plate (17x17cm² hole at center == no absorber)
- Cosmic ray data ('calibration')
 - Before beam test (ANL lab)
 - Right after beam test (FNAL MTBF + ANL lab)
- Charge Injection data ('FE diagnostics')
 - After beam test

With limited manpower, a lot of analyses are not covered at the moment...

Data error modes

- Slice test data errors
 - Rate of data error is very low, ~0.x% (error package/total package)
 - Need to understand the source, mechanism and scaling properties of these errors
 - Critical for event building and data analysis
 - Helps to find ways to eliminate/identify errors
 - Critical for designing a larger system (1m³ physics prototype)
- Current status
 - Identified 14 error modes (not all independent)
 - 9 'fatal error' modes: data can NOT be recovered
 - 5 'non-fatal error' modes: data can still be recovered
 - 7 error modes have been eliminated after slice test
 - 4 major errors (2 'fatal'+2 'non-fatal') still exist
 - 2 'fatal' + 1 'non-fatal' errors correlated with noise issues
 - 1 'non-fatal' error likely to be a firmware issue
 - 'Solution(s)' still need to be studied
 - Data re-run just started

Muon data: calibration of all runs

Positron data

Positron data: 'online results'

- Number of hits in layer 0-5
 - Positron data @ 1, 2, 4, 8, 16 GeV/c
 - Using Čerenkov signal to selecte positron (very pure)
 - No event selection
 - Particle hitting edge
 - Particle showered upstream
 - Multiple particles
 - ...

Positron data: 'online results'

Highly non-linear response

- Largely due to shower leakage
- Also due to digital approach

Surprisingly good energy resolution

 degrade at high energy due to heavy shower leakage

Positron data: MC simulation

- A crude Geant4 simulation was done, just to have an idea about the detector performance
 - Simulated detector has similar layer structure, but with larger size and much more layers
 - Absorber: 2cm Fe → 1.6cm Fe + 0.4cm Cu (beam test: 1.6cm Fe, 0.4cm Cu)
 - Gap size: 13.4mm (== beam test setup)
 - Use fiducial cut to get 'beam test' hits
 - RPC properties
 - MIP efficiency = 0.90 (beam test: still to be determined)
 - Hit multiplicity = 1.65 (beam test: still to be determined)
 - Implementation not optimal
 - Need results from muon runs to get correct implementation
 - Dead channels: not simulated (beam test: exist)
 - Beam properties
 - Pure positron at 1,2,4,8,16 GeV/c, no upstream material, no multiple beam particles, etc. (data: may have junk in it)
 - Assume Gaussian distribution for beam spot (reality: still to be determined)
 - Gaussian central/width from a crude estimate

Positron data: compare data/MC

- Agreement is reasonably good
 - Peak positions are a little bit off
 - Resolution well reproduced
 - Expect significant improvement with careful calibration
- Confirmed that DHCAL works as expected

Positron data: compare data/MC

Pion(/Muon) data

Collected data at (1),2,4,8,16 GeV/c data with Čerenkov veto

Pion(/Muon) data: 'online results'

Data at 2 GeV taken with/without additional iron absorber

Proton data

- No absorber: event looks like MIP tracks
- Data will be used to study RPC rate capability
 - Long time scale effect: decrease of efficiency with overall rate (T ~ sec)
 - Short time scale effect (?): 'dead time' after individual event (T ~ ms)

Conclusion

- DHCAL slice test was a great success
- We collected large, high quality data sets
- The analysis has begun, but a lot remains to be done
- We plan on producing 4 5 papers
- We are clearly short of manpower help is very welcomed (Many thanks to U lowa group for helping our data analysis with a part time graduate student)