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OverviewOverview
Demonstrate can tune-up ILC BDS from expected 

i i i l di i i l l i ipost initial survey conditions to nominal luminosity.
Magnet – BPM alignment.
Beam-Based alignment using magnet movers.
Luminosity tuning using Sextupole multi-knobs.
Single-sided fully dynamic simulation

A.S. Liar GM model ‘B’ + 5Hz feedback + 25nm RMS magnet 
jittjitter

2-sided ‘static’ simulation.

Fi l d bl t jitt ff tFinal doublet jitter effects.
Opportunities for code testing on new fast parallel 
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Simulation ModelSimulation Model
Use Matlab + Lucretia.

d lBeam model:
Single bunch tracking, 80,000 macro-particles.
Si l d h iblSingle ray used where possible.
Beam-beam physics with GUINEA-PIG (beam-beam 
kick pair creation & lumi calculation)kick, pair creation & lumi calculation).

5-Hz Feedback:
5 x and y sextupole BPMs + 6 correctors5 x- and y- sextupole BPMs + 6 correctors.
~50-pulse convergence gain.

Initial beam:Initial beam:
Beam enters BDS on-axis with 10um/34nm 
horizontal/vertical normalised emittances (6nm vertical 
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(
emittance-growth budget).



Error ParametersError Parameters
Initial Quad, Sext, Oct x/y transverse alignment 200 um

Quad, Sext, Oct roll alignment 300 uradQuad, Sext, Oct roll alignment 300 urad

Initial BPM-magnet field center alignment 30 um

dB/B for Quad, Sext, Octs (RMS) 1e-4

M l ti ( & ) 50Mover resolution (x & y) 50 nm

BPM resolutions (Quads) 1 um

BPM resolutions (Sexts) 100 nm

Power supply resolution 14 - bit

FCMS: Assembly alignment 200 um / 300urad

FCMS: Relative internal magnet alignment 10um / 100 urad

FCMS: BPM-magnet initial alignment (i.e. BPM-FCMS Sext field centers) 30 um

FCMS: Oct – Sext co-wound field center relative offsets and rotations 10um / 100urad

Corrector magnet field stability (x & y) 0.1 %

Luminosity (pairs measurement or x/y IP sigma measurements) 1 % (ATF2 SM ~5%)
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Alignment and Tuning Stepsg g p
Switch off Sextupoles and Octupoles.
Perform initial BBA using Quad movers and BPMs -> beam g Q
through to IP.
Quadrupole BPM alignment.
P f Q d l BBA (DFS)Perform Quadrupole BBA (DFS).
Align Sextupole BPMs.
Move FCMS to minimize FCMS BPM readings.Move FCMS to minimize FCMS BPM readings.
Align tail-folding Octupole BPMs.
Activate and align sextupole and octupole magnets.
Rotate whole BDS about first quadrupole to pass beam through 
nominal IP position.
Apply sextupole multiknobs to tune-out IP aberrations andApply sextupole multiknobs to tune-out IP aberrations and 
maximise luminosity.
5-Hz feedback system used throughout to maintain orbit whilst 
t i
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Quadrupole BPM AlignmentQuadrupole BPM Alignment
Nulling Quad-Shunting technique:

To get BPM-Quad offsets, use downstream 10 
Quad BPMs for each Quad being aligned (using Q Q g g ( g
ext. line BPMs for last few Quads).
Quad dK 100-80 % use change in downstreamQuad dK 100 80 %, use change in downstream 
BPM readouts to get Quad offset.
Move Quad and repeat until detect zero crossingMove Quad and repeat until detect zero-crossing.
For offset measurement, use fit to downstream 
BPM di b d d l t f f tiBPM readings based on model transfer functions:

( ))2,1(*)1,2()1,1(*)1,1(/ RRRRxx QQBPMQuad Δ+ΔΔ=
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Alignment ResultsAlignment Results
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Sextupole/Octupole BPM AlignmentSextupole/Octupole BPM Alignment
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, y g , p y
downstream BPM responses.
Alignment is where 1st, 2nd derivative is 0 from fits.
6th Octupole can only be aligned by increasing its field strength by a factor of 
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p y g y g g y
10, so is left with the initial alignment in the simulation.



Beam-Based Alignment of QuadsBeam-Based Alignment of Quads
Use movers on quadrupoles to steer beam through quad BPM 
centers assuming upstream alignment procedure has put beamcenters assuming upstream alignment procedure has put beam 
through center of BPM in quad 1.

Move quads 2 -> SQ3FF to center beam in BPMs 2 -> FCMS.
Also move quad 1 to provide Δθ

SQ3FF

FCMS

SQ3FF

Quad # 1

Beam

Δθ

BPM
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Beam-Based Alignment of QuadsBeam-Based Alignment of Quads
Simple 1-1 style solution constrains BPM readings well but 
causes large deviation from straight-linecauses large deviation from straight-line.

Large dispersive growth of beamsize + possibly moves out of mover 
range.

FCMS
~mm

Δθ
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Beam-Based Alignment of QuadsBeam-Based Alignment of Quads
Use mover minimisation and DFS constraints to limit the mover motion.
Weights used in minimisation algorithm constrain how far movers moveWeights used in minimisation algorithm constrain how far movers move, 
this trades-off final mover positions against accuracy of BPM orbit.

FCMS~100um
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BBA AlgorithmBBA Algorithm
DFS + mover minimisation solution, use Matlab lscov to 
solve in a least-squares sense, A*c=b with weight vector, ie. q , g ,
minimise: (b- A*c)'*diag(1/w^2)*(b - A*c), where:
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Beam Conditions Post-BBABeam Conditions Post BBA
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IP beamsizes (100 seeds) after BPM alignment and BBA.
Significant aberrations present at IP- coupling, dispersion, waist + higher 
order terms.
Use sextupole multi-knobs to tune these out and arrive at nominal ILC
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Use sextupole multi knobs to tune these out and arrive at nominal ILC 
luminosity parameters.



Sextupole Multi-KnobsSextupole Multi Knobs
Deliberately offsetting the beam orbit using the first 
3 FFS sextupoles in an orthogonal way provides3 FFS sextupoles in an orthogonal way provides 
tuning knobs for dispersion and waist-shift at the IP 
through: ).2cos(.~ *

2 μββ yx
s
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Orthogonal knobs are computed by inverting theOrthogonal knobs are computed by inverting the 
sextupole move -> IP aberration matrix formed by 
scanning the sextupoles in turn and measuring the IP 

The dominant IP coupling term <x’y> is tuned-out 
i SQ3FF

g p g
terms.

using SQ3FF.
The 4 skew quads in the BDS coupling correction 
system are iteratively scanned to remove any <xy>
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system are iteratively scanned to remove any <xy>.



Higher-Order Sextupole Multi-KnobsHigher-Order Sextupole Multi-Knobs
Due to sextupole tilt and strength errors, and p g ,
due to non-linear fields as the beam passes 
off-center in the sextupoles, higher-order p , g
aberrations also exist at the IP.
These are corrected for by iterating throughThese are corrected for by iterating through 
sextupoles 1-3 using the tilt dof. on the 
movers to maximise luminosity after themovers to maximise luminosity after the 
linear knobs have converged.
Th t th f th 5 t l lThe strengths of the 5 sextupoles are also 
scanned.
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Application of Multi-KnobsApplication of Multi Knobs
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then the sextupole tilts and strengths are tuned on
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then the sextupole tilts and strengths are tuned on.



Achieved LuminosityAchieved Luminosity
Single-Sided Sim 2-Sided Sim
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Median lumi overhead ~15% in both cases
When simulating both sides 25% of seeds fail to meet design 
luminosity.
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2-beam Simulation2 beam Simulation

Some seeds slower to 
converge in 2-sided 
simulation case. (450 seeds 
simulated)

x 10
34

simulated).
In 2 beam-simulation:

Rotate 2 beamlines to 
bring beams into collision

2

bring beams into collision
Added tuning iterations –
perform a tuning scan on 
e-, then e+ beam – in 1-
beam simulation

1

beam simulation, 
effectively colliding beam 
with self- here against a 
larger beam- effects pair 
t t0 10 20 30 40 50 60 70

0

stats.
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M t St th E C iMagnet Strength Error Comparison
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Comparison of results with relative absolute RMS 
errors on all magnets of 1e-3 and 1e-4
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errors on all magnets of 1e-3 and 1e-4.



Final Doublet Jitter StudyFinal Doublet Jitter Study
BPM BPM

SF1 QF1 SD0 QD0IP FB Kicker
IP ->

OCT OCT

IP FFB kicker in ~1m gap between 2 cryomodules 
IPnear IP.

Distance of kick from SD0 face effects lumi as beam 
is kicked off-center going through SD0.
Advantage to using shorter kicker?
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IP Fast-Feedback
Use ILC IP FFB, tuned for ‘noisy’ conditions

Less than 5% lumi-loss with GM ‘K’ + 25nm component vibration (pulse-
pulse) & ~ 0.1 sigma intra-bunch uncorrelated beam jitter.

Assume BDS-entrance FFB has perfectly flattened beam train (flat 
trajectory into Final Doublet).
No ‘banana’ effect on bunches.
Calculate Luminosity from measured bunches, with mean of last 50 
weighted to account for the rest of the beam train (2820 bunches).
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Effect of SD0/QD0 OffsetEffect of SD0/QD0 Offset
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Luminosity loss as a function of SD0/QD0 offset and relative importance 
of offset through SD0 vs. IP offset.

0 500 1000 1500
SD0/QD0 y-offset / nm

% 200 400 600 800 1000 1200 1400
SD0/QD0 y-offset / nm

Shows beam size growth through offset SD0 dominant over FFB beam 
offset conversion time (more so in vertical plane).

e.g. for y at 500nm offset, ~85% of luminosity loss through beamsize growth 
effect 15% through conversion time of FFB system
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effect, 15% through conversion time of FFB system.



Luminosity vs QD0/SD0 RMS JitterLuminosity vs. QD0/SD0 RMS Jitter 
and Kick Distance
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Calculate Luminosity loss for different jitter / kick distance cases using ‘SD0 lumi loss’ and 
‘FFB lumi loss’ look-up tables (horizontal + vertical).
Left plot shows % nominal luminosity with given RMS SD0/QD0 jitter and varying kick-
SD0 distance
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SD0 distance.
Right plot shows all jitter cases plotted vs. kick distance and shows the expected dependence 
on kick distance.



Tracking Simulation Results with RMS Offsets of bothTracking Simulation Results with RMS Offsets of both 
Final Doublet Cryomodules
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Results show mean and range of luminosities from 100 consecutive 
pulses.



Test of ILC Final Focus Optics @Test of ILC Final Focus Optics @ 
ATF2
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Beam Spot TuningBeam Spot Tuning

Tuning Spot size with sextupole knobs and Shintake monitor after Quad+Sext -> BpmTuning Spot size with sextupole knobs and Shintake monitor after Quad Sext  Bpm 
alignment and BBA
Differences from ILC:

Longer to do IP measurements – 1 minute for SM measurement
No FFS-phase skew quad for <x’y> correction – use sextupole moves instead
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No FFS phase skew quad for <x y> correction use sextupole moves instead



Beam Size Growth After TuningBeam Size Growth After Tuning
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Long-Timescale PerformanceLong Timescale Performance
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