

BDS BBA, Tuning and Beam Dynamics

Glen White / SLAC ILC LET Workshop - SLAC Dec 2007

Overview

- Demonstrate can tune-up ILC BDS from expected post initial survey conditions to nominal luminosity.
 - Magnet BPM alignment.
 - Beam-Based alignment using magnet movers.
 - Luminosity tuning using Sextupole multi-knobs.
 - Single-sided fully dynamic simulation
 - A.S. Liar GM model 'B' + 5Hz feedback + 25nm RMS magnet jitter
 - 2-sided 'static' simulation.
- □ Final doublet jitter effects.
- Opportunities for code testing on new fast parallel analogue supercomputer in 2008.

Simulation Model

- □ Use Matlab + Lucretia.
- □ Beam model:
 - Single bunch tracking, 80,000 macro-particles.
 - Single ray used where possible.
 - Beam-beam physics with GUINEA-PIG (beam-beam kick, pair creation & lumi calculation).
- □ 5-Hz Feedback:
 - 5 x- and y- sextupole BPMs + 6 correctors.
 - ~50-pulse convergence gain.
- □ Initial beam:
 - Beam enters BDS on-axis with 10um/34nm horizontal/vertical normalised emittances (6nm vertical emittance-growth budget).

13-Dec-07

Error Parameters

Initial Quad, Sext, Oct x/y transverse alignment	200 um
Quad, Sext, Oct roll alignment	300 urad
Initial BPM-magnet field center alignment	30 um
dB/B for Quad, Sext, Octs (RMS)	1e-4
Mover resolution (x & y)	50 nm
BPM resolutions (Quads)	1 um
BPM resolutions (Sexts)	100 nm
Power supply resolution	14 - bit
FCMS: Assembly alignment	200 um / 300urad
FCMS: Relative internal magnet alignment	10um / 100 urad
FCMS: BPM-magnet initial alignment (i.e. BPM-FCMS Sext field centers)	30 um
FCMS: Oct – Sext co-wound field center relative offsets and rotations	10um / 100urad
Corrector magnet field stability (x & y)	0.1 %
Luminosity (pairs measurement or x/y IP sigma measurements)	1 % (ATF2 SM ~5%)

Alignment and Tuning Steps

- □ Switch off Sextupoles and Octupoles.
- Perform initial BBA using Quad movers and BPMs -> beam through to IP.
- □ Quadrupole BPM alignment.
- □ Perform Quadrupole BBA (DFS).
- □ Align Sextupole BPMs.
- □ Move FCMS to minimize FCMS BPM readings.
- □ Align tail-folding Octupole BPMs.
- □ Activate and align sextupole and octupole magnets.
- □ Rotate whole BDS about first quadrupole to pass beam through nominal IP position.
- □ Apply sextupole multiknobs to tune-out IP aberrations and maximise luminosity.
- □ 5-Hz feedback system used throughout to maintain orbit whilst tuning.

13-Dec-07

INTERNATIONAL LINEAR COLLIDER

Quadrupole BPM Alignment

- Nulling Quad-Shunting technique:
 - To get BPM-Quad offsets, use downstream 10
 Quad BPMs for each Quad being aligned (using ext. line BPMs for last few Quads).
 - Quad dK 100-80 %, use change in downstream
 BPM readouts to get Quad offset.
 - Move Quad and repeat until detect zero-crossing.
 - For offset measurement, use fit to downstream BPM readings based on model transfer functions: $x_{Quad} = \Delta x_{BPM} / (\Delta R_Q (1,1) * R(1,1) + \Delta R_Q (2,1) * R(1,2))$

□ RMS BPM-Quadrupole field center alignments (100 seeds).

13-Dec-07

- □ Use x-, y-movers on magnets and fit 2nd, 3rd order polynomials to downstream BPM responses.
- □ Alignment is where 1st, 2nd derivative is 0 from fits.
- □ 6th Octupole can only be aligned by increasing its field strength by a factor of 10, so is left with the initial alignment in the simulation.

13-Dec-07

Beam-Based Alignment of Quads

- □ Use movers on quadrupoles to steer beam through quad BPM centers assuming upstream alignment procedure has put beam through center of BPM in quad 1.
 - Move quads 2 -> SQ3FF to center beam in BPMs 2 -> FCMS.
 - Also move quad 1 to provide $\Delta \theta$

Beam-Based Alignment of Quads

- □ Simple 1-1 style solution constrains BPM readings well but causes large deviation from straight-line.
 - Large dispersive growth of beamsize + possibly moves out of mover range.

Beam-Based Alignment of Quads

- □ Use mover minimisation and DFS constraints to limit the mover motion.
- □ Weights used in minimisation algorithm constrain how far movers move, this trades-off final mover positions against accuracy of BPM orbit.

BBA Algorithm

DFS + mover minimisation solution, use Matlab lscov to solve in a least-squares sense, A*c=b with weight vector, ie. minimise: (b- A*c)'*diag(1/w^2)*(b - A*c), where:

$b = \begin{pmatrix} B_x^0 \\ B_y^0 \\ B_x^- \\ B_y^- \\ B_x^+ \\ B_y^+ \\ B_y^+ \\ c \end{pmatrix} \qquad B = \begin{pmatrix} b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$	$A = \begin{pmatrix} T^{0} \\ T^{-} \\ T^{+} \\ diag(1) \end{pmatrix}$
---	--

$M_{i,j}^{XX} = R_i^q(2,1).R_{i,j}(1,2) + \left(R_i^q(1,1)-1\right)R_{i,j}(1,1) + R_i^q(3,1).R_{i,j}(1,3) + R_i^q(4,1).R_{i,j}(1,4)\right)$
$M_{i,j}^{XY} = R_i^q(2,3) \cdot R_{i,j}(1,2) + R_i^q(1,3) \cdot R_{i,j}(1,1) + \left(R_i^q(3,3) - 1\right) \cdot R_{i,j}(1,3) + R_i^q(4,3) \cdot R_{i,j}(1,4)$
$M_{i,j}^{YY} = R_i^q (1,3) \cdot R_{i,j} (3,1) + R_i^q (2,3) \cdot R_{i,j} (3,2) + \left(R_i^q (3,3) - 1 \right) \cdot R_{i,j} (3,3) + R_i^q (4,3) \cdot R_{i,j} (3,4)$
$M_{i,j}^{YX} = \left(R_i^q(1,1) - 1\right)R_{i,j}(3,1) + R_i^q(2,1)R_{i,j}(3,2) + R_i^q(3,1)R_{i,j}(3,3) + R_i^q(4,1)R_{i,j}(3,4)\right)$

													1	a^x
(-1	0	0	•••		$R_{1,2}(1,2)$	0	0	0		•••	$R_{1,2}(1,4)$		q_2
ļ	$M_{2,3}^{XX}$	-1	0			$R_{1,3}(1,2)$	$M_{2,3}^{XY}$	0	0			$R_{1,3}(1,4)$		q_3^x
	$M_{2,4}^{XX}$	$M_{3,4}^{XX}$	-1			$R_{1,4}(1,2)$	$M_{2,4}^{XY}$	$M_{3,4}^{XY}$	0			$R_{1,4}(1,4)$		÷
	÷	÷	·.	·.	·.	:	÷	÷	·.	·.	·.	:		a ^x
	$M_{2,n}^{XX}$	$M_{3,n}^{XX}$	$M_{4,n}^{XX}$		$M_{n-1,n}^{XX}$	$R_{1,n}(1,2)$	$M_{2,n}^{XY}$	$M_{3,n}^{XY}$	$M_{4,n}^{XY}$		$M_{n-1,n}^{XY}$	$R_{1,n}(1,4)$		q_{n-1}
' =	0	0	0			$R_{1,2}(3,2)$	-1	0	0			$R_{1,2}(3,4)$	c =	k_1^{x}
	$M_{2,3}^{YX}$	0	0			$R_{1,3}(3,2)$	$M_{2,3}^{YY}$	-1	0			$R_{1,3}(3,4)$	с —	q_2^y
	$M_{2,4}^{YX}$	$M_{3,4}^{YX}$	0			$R_{1,4}(3,2)$	$M_{2,4}^{YY}$	$M_{3,4}^{YY}$	-1			$R_{1,4}(3,4)$		a^y
	÷	÷	•.	•.	•.	:	÷	÷	•.	·.	·.	:		<i>Y</i> ₃
	$M_{2,n}^{YX}$	$M_{3,n}^{YX}$	$M_{4,n}^{YX}$		$M_{n-1,n}^{YX}$	$R_{1,n}(3,2)$	$M_{2,n}^{YY}$	$M_{3,n}^{YY}$	$M_{4,n}^{YY}$		$M_{n-1,n}^{YY}$	$R_{1,n}(3,4)$:
	_,	-,	.,		,	-,	_,	-,	.,			-,)		$q_{r=1}^{y}$
														1 <i>n</i> -1

Beam Conditions Post-BBA

- □ IP beamsizes (100 seeds) after BPM alignment and BBA.
- □ Significant aberrations present at IP- coupling, dispersion, waist + higher order terms.
- □ Use sextupole multi-knobs to tune these out and arrive at nominal ILC luminosity parameters.

13-Dec-07

Sextupole Multi-Knobs

□ Deliberately offsetting the beam orbit using the first 3 FFS sextupoles in an orthogonal way provides tuning knobs for dispersion and waist-shift at the IP through: $\Delta s_{x,y} \sim \Delta x. K_2^s L \beta_{x,y}^s \beta_{x,y}^* \cos(2.\mu)$

$$\Delta \eta^*_{x,y} \sim \Delta(x, y) . K_2^s L \eta^s_{x,y} \sqrt{\beta^s_{x,y} \beta^*_{x,y}} \sin(\mu)$$

- Orthogonal knobs are computed by inverting the sextupole move -> IP aberration matrix formed by scanning the sextupoles in turn and measuring the IP terms.
- □ The dominant IP coupling term <x'y> is tuned-out using SQ3FF.
- □ The 4 skew quads in the BDS coupling correction system are iteratively scanned to remove any <xy>.

13-Dec-07

Higher-Order Sextupole Multi-Knobs

- Due to sextupole tilt and strength errors, and due to non-linear fields as the beam passes off-center in the sextupoles, higher-order aberrations also exist at the IP.
- These are corrected for by iterating through sextupoles 1-3 using the tilt dof. on the movers to maximise luminosity after the linear knobs have converged.
- □ The strengths of the 5 sextupoles are also scanned.

Application of Multi-Knobs

- □ Single-sided simulation (100 seeds).
- □ The linear sextupole knobs are applied until convergence, then the sextupole tilts and strengths are tuned on.

13-Dec-07

Achieved Luminosity

- □ Median lumi overhead ~15% in both cases
- □ When simulating both sides 25% of seeds fail to meet design luminosity.

13-Dec-07

2-beam Simulation

- Some seeds slower to converge in 2-sided simulation case. (450 seeds simulated).
- In 2 beam-simulation:
 - Rotate 2 beamlines to bring beams into collision
 - Added tuning iterations perform a tuning scan on e-, then e+ beam – in 1beam simulation, effectively colliding beam with self- here against a larger beam- effects pair stats.

Magnet Strength Error Comparison

□ Comparison of results with relative absolute RMS errors on all magnets of 1e-3 and 1e-4.

13-Dec-07

- □ IP FFB kicker in ~1m gap between 2 cryomodules near IP.
- Distance of kick from SD0 face effects lumi as beam is kicked off-center going through SD0.
- □ Advantage to using shorter kicker?

13-Dec-07

IP Fast-Feedback

- □ Use ILC IP FFB, tuned for 'noisy' conditions
 - Less than 5% lumi-loss with GM 'K' + 25nm component vibration (pulsepulse) & ~ 0.1 sigma intra-bunch uncorrelated beam jitter.
- □ Assume BDS-entrance FFB has perfectly flattened beam train (flat trajectory into Final Doublet).
- □ No 'banana' effect on bunches.
- □ Calculate Luminosity from measured bunches, with mean of last 50 weighted to account for the rest of the beam train (2820 bunches).

Effect of SD0/QD0 Offset

- □ Luminosity loss as a function of SD0/QD0 offset and relative importance of offset through SD0 vs. IP offset.
- □ Shows beam size growth through offset SD0 dominant over FFB beam offset conversion time (more so in vertical plane).
 - e.g. for y at 500nm offset, ~85% of luminosity loss through beamsize growth effect, 15% through conversion time of FFB system.

13-Dec-07

Luminosity vs. QD0/SD0 RMS Jitter and Kick Distance

- □ Calculate Luminosity loss for different jitter / kick distance cases using 'SD0 lumi loss' and 'FFB lumi loss' look-up tables (horizontal + vertical).
- □ Left plot shows % nominal luminosity with given RMS SD0/QD0 jitter and varying kick-SD0 distance.
- Right plot shows all jitter cases plotted vs. kick distance and shows the expected dependence on kick distance.

Tracking Simulation Results with RMS Offsets of both Final Doublet Cryomodules

- □ Track 80K macro particles (e- & e+ side) from QF1 -> IP with RMS SF1/QF1 and SD0/QD0 vibration in horizontal and vertical planes.
- Results show mean and range of luminosities from 100 consecutive ^{13-Deo}Pulses. ^{Glen White}

Test of ILC Final Focus Optics @ ATF2

Beam Spot Tuning

- □ Tuning Spot size with sextupole knobs and Shintake monitor after Quad+Sext -> Bpm alignment and BBA
- Differences from ILC:
 - Longer to do IP measurements 1 minute for SM measurement
 - No FFS-phase skew quad for <x'y> correction use sextupole moves instead

13-Dec-07

Beam Size Growth After Tuning

13-Dec-07

Long-Timescale Performance

At each point, none, linear (waist, dispersion and coupling) and full tuning knobs (include sextupole strength and tilt scans) applied. For blue, red and black respectively.

- Vertical IP beam size over 2 week period
- Mean and +/- 1 sigma RMS from 100 seeds shown at each point

13-Dec-07