INTERNATIONAL LINEAR COLLIDER SLAC
 BDS BBA, Tuning and Beam Dynamics

Glen White / SLAC
ILC LET Workshop - SLAC Dec 2007

Overview

- Demonstrate can tune-up ILC BDS from expected post initial survey conditions to nominal luminosity.
- Magnet - BPM alignment.
- Beam-Based alignment using magnet movers.
- Luminosity tuning using Sextupole multi-knobs.
- Single-sided fully dynamic simulation
- A.S. Liar GM model ‘B’ + 5Hz feedback + 25nm RMS magnet jitter
- 2-sided 'static' simulation.
- Final doublet jitter effects.
\square Opportunities for code testing on new fast parallel analogue supercomputer in 2008.

Simulation Model

ㅁ Use Matlab + Lucretia.

- Beam model:

■ Single bunch tracking, 80,000 macro-particles.

- Single ray used where possible.
- Beam-beam physics with GUINEA-PIG (beam-beam kick, pair creation \& lumi calculation).
- 5-Hz Feedback:
- 5 x - and y - sextupole BPMs +6 correctors.
- ~50-pulse convergence gain.

ㅁ Initial beam:

- Beam enters BDS on-axis with $10 \mathrm{um} / 34 \mathrm{~nm}$ horizontal/vertical normalised emittances (6 nm vertical emittance-growth budget) giner $_{\text {mine }}$

Error Parameters

Initial Quad, Sext, Oct x/y transverse alignment	200 um
Quad, Sext, Oct roll alignment	300 urad
Initial BPM-magnet field center alignment	30 um
dB / B for Quad, Sext, Octs (RMS)	$1 \mathrm{e}-4$
Mover resolution (x \& y)	50 nm
BPM resolutions (Quads)	1 um
BPM resolutions (Sexts)	100 nm
Power supply resolution	$14-\mathbf{b i t}$
FCMS: Assembly alignment	$200 \mathrm{um} / 300 \mathrm{urad}$
FCMS: Relative internal magnet alignment	$10 \mathrm{um} / 100 \mathrm{urad}$
FCMS: BPM-magnet initial alignment (i.e. BPM-FCMS Sext field centers)	30 um
FCMS: Oct - Sext co-wound field center relative offsets and rotations	$10 \mathrm{um} / 100 \mathrm{urad}$
Corrector magnet field stability (x \& y)	0.1%
Luminosity (pairs measurement or x/y IP sigma measurements)	1% (ATF2 SM ~5\%)

Alignment and Tuning Steps

- Switch off Sextupoles and Octupoles.
- Perform initial BBA using Quad movers and BPMs -> beam through to IP.
- Quadrupole BPM alignment.
- Perform Quadrupole BBA (DFS).
- Align Sextupole BPMs.
- Move FCMS to minimize FCMS BPM readings.
- Align tail-folding Octupole BPMs.
\square Activate and align sextupole and octupole magnets.
- Rotate whole BDS about first quadrupole to pass beam through nominal IP position.
- Apply sextupole multiknobs to tune-out IP aberrations and maximise luminosity.
- 5-Hz feedback system used throughout to maintain orbit whilst tuning.

Quadrupole BPM Alignment

\square Nulling Quad-Shunting technique:

- To get BPM-Quad offsets, use downstream 10 Quad BPMs for each Quad being aligned (using ext. line BPMs for last few Quads).
■ Quad dK 100-80 \%, use change in downstream BPM readouts to get Quad offset.
- Move Quad and repeat until detect zero-crossing.
- For offset measurement, use fit to downstream BPM readings based on model transfer functions:

$$
x_{\text {Quad }}=\Delta x_{\text {BPM }} /\left(\Delta R_{Q}(1,1) * R(1,1)+\Delta R_{Q}(2,1) * R(1,2)\right)
$$

Alignment Results

- RMS BPM-Quadrupole field center alignments (100 seeds).

Sextupole/Octupole BPM Alignment

- Use x-, y-movers on magnets and fit 2nd, 3rd order polynomials to downstream BPM responses.
- Alignment is where 1st, 2nd derivative is 0 from fits.
$\square \quad 6^{\text {th }}$ Octupole can only be aligned by increasing its field strength by a factor of 10 , so is left with the initial alignment in the simulation.

Beam-Based Alignment of Quads

- Use movers on quadrupoles to steer beam through quad BPM centers assuming upstream alignment procedure has put beam through center of BPM in quad 1.
- Move quads 2 -> SQ3FF to center beam in BPMs 2 -> FCMS.
- Also move quad 1 to provide $\Delta \theta$

Beam-Based Alignment of Quads

- Simple 1-1 style solution constrains BPM readings well but causes large deviation from straight-line.
- Large dispersive growth of beamsize + possibly moves out of mover range.

Beam-Based Alignment of Quads

- Use mover minimisation and DFS constraints to limit the mover motion.
- Weights used in minimisation algorithm constrain how far movers move, this trades-off final mover positions against accuracy of BPM orbit.

BBA Algorithm

- DFS + mover minimisation solution, use Matlab lscov to solve in a least-squares sense, $\mathrm{A}^{*} \mathrm{c}=\mathrm{b}$ with weight vector, ie. minimise: (b- A*c) ${ }^{\prime *} \operatorname{diag}\left(1 / \mathrm{w}^{\wedge} 2\right)^{*}\left(\mathrm{~b}-\mathrm{A}^{*} \mathrm{c}\right)$, where:

$$
\begin{aligned}
& b=\left(\begin{array}{c}
B_{x}^{0} \\
B_{y}^{0} \\
B_{x}^{-} \\
B_{y}^{-} \\
B_{x}^{+} \\
B_{y}^{+}
\end{array}\right) \quad B=\left(\begin{array}{c}
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right) \quad A=\left(\begin{array}{c}
T^{0} \\
T^{-} \\
T^{+} \\
\operatorname{diag}(1)
\end{array}\right) \\
& \begin{array}{l}
M_{i, j}^{X X}=R_{i}^{q}(2,1) \cdot R_{i, j}(1,2)+\left(R_{i}^{q}(1,1)-1\right) \cdot R_{i, j}(1,1)+R_{i}^{q}(3,1) \cdot R_{i, j}(1,3)+R_{i}^{q}(4,1) \cdot R_{i, j}(1,4) \\
M_{i, j}^{X Y}=R_{i}^{q}(2,3) \cdot R_{i, j}(1,2)+R_{i}^{q}(1,3) \cdot R_{i, j}(1,1)+\left(R_{i}^{q}(3,3)-1\right) \cdot R_{i, j}(1,3)+R_{i}^{q}(4,3) \cdot R_{i, j}(1,4) \\
M_{i, j}^{Y Y}=R_{i}^{q}(1,3) \cdot R_{i, j}(3,1)+R_{i}^{q}(2,3) \cdot R_{i, j}(3,2)+\left(R_{i}^{q}(3,3)-1\right) \cdot R_{i, j}(3,3)+R_{i}^{q}(4,3) \cdot R_{i, j}(3,4) \\
M_{i, j}^{Y X}=\left(R_{i}^{q}(1,1)-1\right) \cdot R_{i, j}(3,1)+R_{i}^{q}(2,1) \cdot R_{i, j}(3,2)+R_{i}^{q}(3,1) \cdot R_{i, j}(3,3)+R_{i}^{q}(4,1) \cdot R_{i, j}(3,4)
\end{array} \\
& T=\left(\begin{array}{cccccccccccc}
-1 & 0 & 0 & \ldots & \ldots & R_{1,2}(1,2) & 0 & 0 & 0 & \ldots & \ldots & R_{1,2}(1,4) \\
M_{2,3}^{X X} & -1 & 0 & \ldots & \ldots & R_{1,3}(1,2) & M_{2,3}^{X Y} & 0 & 0 & \ldots & \ldots & R_{1,3}(1,4) \\
M_{2,4}^{X X} & M_{3,4}^{X X} & -1 & \ldots & \ldots & R_{1,4}(1,2) & M_{2,4}^{X Y} & M_{3,4}^{X Y} & 0 & \ldots & \ldots & R_{1,4}(1,4) \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
M_{2, n}^{X X} & M_{3, n}^{X X} & M_{4, n}^{X X} & \ldots & M_{n-1, n}^{X X} & R_{1, n}(1,2) & M_{2, n}^{X Y} & M_{3, n}^{X Y} & M_{4, n}^{X Y} & \ldots & M_{n-1, n}^{X Y} & R_{1, n}(1,4) \\
0 & 0 & 0 & \ldots & \ldots & R_{1,2}(3,2) & -1 & 0 & 0 & \ldots & \ldots & R_{1,2}(3,4) \\
M_{2,3}^{Y X} & 0 & 0 & \ldots & \ldots & R_{1,3}(3,2) & M_{2,3}^{Y Y} & -1 & 0 & \ldots & \ldots & R_{1,3}(3,4) \\
M_{2,4}^{Y X} & M_{3,4}^{Y X} & 0 & \ldots & \ldots & R_{1,4}(3,2) & M_{2,4}^{Y Y} & M_{3,4}^{Y Y} & -1 & \ldots & \ldots & R_{1,4}(3,4) \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
M_{2, n}^{Y X} & M_{3, n}^{Y X} & M_{4, n}^{Y X} & \ldots & M_{n-1, n}^{Y X} & R_{1, n}(3,2) & M_{2, n}^{Y Y} & M_{3, n}^{Y Y} & M_{4, n}^{Y Y} & \ldots & M_{n-1, n}^{Y Y} & R_{1, n}(3,4)
\end{array}\right)
\end{aligned}
$$

Beam Conditions Post-BBA

- IP beamsizes (100 seeds) after BPM alignment and BBA.
- Significant aberrations present at IP- coupling, dispersion, waist + higher order terms.
- Use sextupole multi-knobs to tune these out and arrive at nominal ILC luminosity parameters.

Sextupole Multi-Knobs

ㅁ Deliberately offsetting the beam orbit using the first 3 FFS sextupoles in an orthogonal way provides tuning knobs for dispersion and waist-shift at the IP through: $\Delta s_{x, y} \sim \Delta x . K_{2}^{s} L \beta_{x, y}^{s} \beta_{x, y}^{*} \cos (2 . \mu)$

$$
\Delta \eta_{x, y}^{*} \sim \Delta(x, y) \cdot K_{2}^{s} L \eta_{x, y}^{s} \sqrt{\beta_{x, y}^{s} \beta_{x, y}^{*}} \sin (\mu)
$$

\square Orthogonal knobs are computed by inverting the sextupole move -> IP aberration matrix formed by scanning the sextupoles in turn and measuring the IP terms.

- The dominant IP coupling term $\langle x$ ' $y>$ is tuned-out using SQ3FF.
\square The 4 skew quads in the BDS coupling correction system are iteratively scanned to remove any <xy>.

Higher-Order Sextupole Multi-Knobs

\square Due to sextupole tilt and strength errors, and due to non-linear fields as the beam passes off-center in the sextupoles, higher-order aberrations also exist at the IP.
\square These are corrected for by iterating through sextupoles 1-3 using the tilt dof. on the movers to maximise luminosity after the linear knobs have converged.

- The strengths of the 5 sextupoles are also scanned.

Application of Multi-Knobs

ㅁ Single-sided simulation (100 seeds).

- The linear sextupole knobs are applied until convergence, then the sextupole tilts and strengths are tuned on.

Achieved Luminosity

- Median lumi overhead $\sim 15 \%$ in both cases
- When simulating both sides 25% of seeds fail to meet design luminosity.

2-beam Simulation

- Some seeds slower to converge in 2-sided simulation case. (450 seeds simulated).
- In 2 beam-simulation:
- Rotate 2 beamlines to bring beams into collision
- Added tuning iterations perform a tuning scan on e -, then $\mathrm{e}+$ beam - in 1beam simulation, effectively colliding beam with self- here against a larger beam- effects pair stats.

Magnet Strength Error Comparison

- Comparison of results with relative absolute RMS errors on all magnets of $1 \mathrm{e}-3$ and $1 \mathrm{e}-4$.

Final Doublet Jitter Study

\square IP FFB kicker in $\sim 1 \mathrm{~m}$ gap between 2 cryomodules near IP.

- Distance of kick from SD0 face effects lumi as beam is kicked off-center going through SD0.
- Advantage to using shorter kicker?

IP Fast-Feedback

- Use ILC IP FFB, tuned for 'noisy' conditions
- Less than 5% lumi-loss with GM ' K ’ +25 nm component vibration (pulsepulse) $\& \sim 0.1$ sigma intra-bunch uncorrelated beam jitter.
- Assume BDS-entrance FFB has perfectly flattened beam train (flat trajectory into Final Doublet).
- No 'banana' effect on bunches.
- Calculate Luminosity from measured bunches, with mean of last 50 weighted to account for the rest of the beam train (2820 bunches).

Effect of SD0/QD0 Offset

- Luminosity loss as a function of SD0/QD0 offset and relative importance of offset through SD0 vs. IP offset.
- Shows beam size growth through offset SD0 dominant over FFB beam offset conversion time (more so in vertical plane).
- e.g. for y at 500 nm offset, $\sim 85 \%$ of luminosity loss through beamsize growth effect, 15% through conversion time of FFB system.

Luminosity vs. QD0/SD0 RMS Jitter and Kick Distance

- Calculate Luminosity loss for different jitter / kick distance cases using 'SD0 lumi loss' and 'FFB lumi loss’ look-up tables (horizontal + vertical).
$\square \quad$ Left plot shows \% nominal luminosity with given RMS SD0/QD0 jitter and varying kickSD0 distance.
 on kick distance.

Tracking Simulation Results with RMS Offsets of both Final Doublet Cryomodules

- Track 80K macro particles (e- \& e+ side) from QF1 -> IP with RMS SF1/QF1 and SD0/QD0 vibration in horizontal and vertical planes.
- Results show mean and range of luminosities from 100 consecutive 13-Decpirulses.

Test of ILC Final Focus Optics @ ATF2

Beam Spot Tuning

- Tuning Spot size with sextupole knobs and Shıntake monitor atter Quad+Sext -> Bpm alignment and BBA
- Differences from ILC:
- Longer to do IP measurements - 1 minute for SM measurement
- No FFS-phase skew quad for <x'y> correction - use sextupole moves instead

Beam Size Growth After Tuning

- With feedbacks on, y beam size at IP as a function of time
- Mean of 100 seeds shown
- Growth rate - 0.5 nm per hour

Long-Timescale Performance

At each point, none, linear (waist, dispersion and coupling) and full tuning knobs (include sextupole strength and tilt scans) applied. For blue, red and black respectively.

- Vertical IP beam size over 2 week period
- Mean and $+/-1$ sigma RMS from 100 seeds shown at each point

