

Lucretia Status and Plans

PT SLAC

"I hear the roar of the big machine Two worlds and in-between..."

Remind me – what's Lucretia?

- A Matlab-based toolkit for simulations of beam dynamics in single-pass electron beamlines
 - Most components are Matlab scripts or functions
 - A handful of compiled C functions which run under Matlab ("mexfiles")
 - Compute intensive activities like tracking
 - Tracks pointlike rays with user-defined charge, not 4-D (or 6-D) macroparticles
 - » Can construct 4-D macroparticles out of small #'s of rays
 - » Lucretia distribution includes functions to do this
 - R-matrix calculation, Twiss propagation, lattice verification
 - Share a lot of code with Tracking
 - Inspired by Accelerator Toolkit (AT), an electron ring application in Matlab
- Designed with the ILC in mind
 - Somewhat useful for other applications LCLS, XFEL
 - Designed from the ground up to be an all-in-one tool for LET studies
 - As "bulletproof" as we can make it
 - Careful memory management
 - · Careful error handling
 - Segmentation faults fixed as quickly as possible
 - Runs under Matlab
 - Matlab data (ie, beamline state, etc) preserved even if a fault is detected
- Main code maintained by SLAC ILC team
 - LIAR and DIMAD not actively supported
 - Support for MAD-8 Acc limited
 - MAD-8 is mainly used as a design code
 - Functionality needed for LET types of simulations not available

What's In Lucretia?

- Accelerator representation
 - Five cross-referenced global arrays
 - BEAMLINE, GIRDER, KLYSTRON, PS, WF
 - Support the usual spectrum of elements and physics effects, plus relationships between elements
 - Good representation of errors and offsets
 - Implicit support for multiple beamlines
 - Several beamlines can be stored sequentially in global arrays
 - You can track, compute R-matrices, etc on any subset of interest
- Beam representation
 - Charge-weighted pointlike rays
 - Inherently multi-bunch
- Beam instrumentation
 - Captures "observables"
 - IE, beam position reading, beam size reading
 - Also captures "unobservables"
 - Sometimes you need these to understand why your simulation didn't work the way you wanted it to
 - Built-in support for BPM resolution limits, electrical offsets
 - No support in the tracking engine for limitations on other instruments
 - Harder to quantify
 - Always possible to write a script which sits on top of the tracker and applies customized errors to the profile monitors, charge monitors, etc.
- Seed control
 - Everything which uses random numbers uses Matlab rand and randn functions
 - Control of those generators == control of your seeds!

Connection to Matlab

- Lucretia functions all run from the Matlab command line
- Compiled functions make use of Matlab functions
 - Sort, spline, rand/randn, gammaln, pascal, abs, det, plus the Matlab API functions
- Codebase carefully organized to separate Matlab-dependent code from generic algorithm code
 - Can in principle replace Matlab connections with, e.g., Octave's
 - Haven't really pursued this
 - SLAC users all have Matlab licenses
 - True Matlab/Octave compatibility level not known
 - Some users like to use other toolboxes, e.g. Simulink
- Some licensing issues with Matlab
 - Mainly related to running large #'s of seeds simultaneously
 - Implying large #'s of license seats, which we don't have
 - Mostly but not entirely addressed with Matlab compiler
 - Compiler output does not need licenses to run
 - Some toolboxes not available in this mode
 - Trying to convince Mathworks that SLAC should get educational license rate!

Why Matlab?

- A library / toolkit has more flexibility than a program but takes more user effort to accomplish anything
 - "The Ikea model make the customer do all the work!"
- Matlab supplies a lot of nice features
 - Command parser (Matlab command line)
 - Memory management
 - Full-featured graphics
 - GUI
 - Highly optimized numerical tools
- Matlab offers a nice mix of batch and interactive operation features
 - Can run a simulation and then interactively poke around at the results
- These features are available to greater or lesser extent in a pure compiled library such as BMAD or Merlin
 - Some people (like me) are more productive with Matlab than in a pure-compiled environment
 - That's how Mathworks makes their money...

Other Lucretia Features

An online manual in the form of a heavily cross-linked website:

http://www.slac.stanford.edu/accel/ilc/codes/Lucretia/

A GUI for studying the beamline data structures (recent)

EmatAto2

TrackThru VerifyLattice LucretarComm

accessa Phonor

The LUCRETIA Project

Welcome to Lucretia

gnally got the idea for a beam dynamics code which was a library of functions rather than a self-contained program from Nick Walker, whon

18-Apr-2005

02-August-200

24.May.2007

ATF2 and Matlab Middleware

- Lucretia is being used for ATF2 simulations
 - Developing tuning algorithms, etc.
- Would like to be able to use new algorithms directly on ATF2 itself
- Would also like to be able to get ATF2 machine state data, study it in Lucretia
- Matlab "middleware" being developed
 - User scripts and functions get / put data into "middleware"
 - PS settings, BPM readings, etc.
 - Middleware can talk to either the real accelerator or the Lucretia simulation

At the same time, a more general purpose tool is being developed to write a machine description from the Matlab middleware to a text file which can be loaded by any application...

Lucretia -- Plans

- What features are needed for ILC LET work which are not yet supported in Lucretia?
 - Undulator in electron linac
 - Optical effects, if any
 - Betatron effects focusing, coupling
 - Dispersion (esp. from errors in the undulator)
 - Energy loss, growth in energy spread from SR

- IR Solenoid

- Wrapped around IR magnets
- With a 7 mrad angle wrt the beam line itself

Cavity issues

- RF kicks
- SRWF at cavity center

Undulator

- How to do this?
 - Lumped element (ie, UNDULATOR element in lattice)
 - Most concise way to represent it
 - May be rather difficult to implement
 - May not be very accurate
 - Gigantic array of sector bends
 - Easy to implement
 - Not very concise
 - Slow in simulation
 - Probably not very accurate
 - But maybe enough for a single-pass lattice?
 - Field map
 - Can be as accurate as we need
 - Not concise
 - Slow
 - Difficult to implement
 - Need this anyway for IR solenoid (next slide)
- How to proceed
 - Get field map from e+ source team
 - Study the 3 options above and compare to the field map they give us
 - IE, how accurate is the sector bend method, how slow is it; if we use a lumped element, would it be better; etc.
 - Make a decision and go forward
- Hope to have this implemented by mid-Spring of 2008 (late April?)

IR Solenoid

- Somewhat complicated field profile
- Wraps around lots of IR elements
- Includes anti-solenoid and Detector Integrated Dipole (DID)
 - Complicated set of SC windings which steer the beam around
- Tentative conclusion: field map is the best way to represent this
 - User can specify arbitrary slice spacing
 - As accurate as he/she needs, with usual execution speed tradeoff
 - All the strange fields can be included
 - Obeying Maxwell's equations is the user's obligation
 - Consistent with the "Ikea Model"
 - Use Matlab's interp2 to do 2-D interpolation of the field maps

IR Solenoid (2): Field Map

- Tentative implementation plan
 - Add a FIELDMAP global data structure
 - Beamline quads, sextupoles, etc. still described by unsliced elements in BEAMLINE
 - FIELDMAPs are superimposed over elements in BEAMLINE
 - FIELDMAPs can use PS, GIRDER data structures
 - IE, a bunch of FIELDMAPs can be powered by one PS, on a GIRDER with a x-ing angle wrt the beamline
- Why not just use superimposed elements, a la BMAD?
 - Trivial reason: superimposing elements on top of other elements would require radical changes in beamline representation; adding FIELDMAP on top is less drastic
 - Non-Trivial reason: IR fields are so complicated we think that a lot of "slices" will be needed no matter what we do
 - If we can't use a small number of superimposed elements, seems like we might as well use a FIELDMAP
 - Not absolutely sold on this approach yet
- Tentative schedule: order of Late May 2008
 - Want an extra month compared to the undulator program to convince ourselves this is the right idea!

Cavity Issues

- Not yet sure what to do here!
 - Waiting for outcome of WakeFest meeting
 - Hopefully some of these problems will go away!

AML Support

- Plans brewing to migrate ILC lattices from XSIF to AML
 - see talk in ~40 minutes from now
- Part of the plan includes AML support for Lucretia
 - Via a "mex-ed" version of the Universal Accelerator Parser (UAP) and a Matlab function to extract the data from UAP and generate Lucretia data structures
 - Will almost certainly do this regardless of AML migration
 - UAP includes XSIF, MAD, BMAD language support
 - Plan to add SAD support to UAP
 - We get a lot of functionality by doing this
 - Consolidates parser support by keeping updated link to UAP we get all these languages, don't need to maintain a separate XSIF parser, SAD parser, etc.
- Timescale is 2nd half of CY08

Documentation Improvements

- Lucretia has online documentation
 - Big, cross-linked website
- Good if you want to know the syntax of some function
- Not so good if you want to learn to use Lucretia
 - "Like using man pages to try and learn how to use something"
- Need to add more straightforward tutorial examples
- Time frame of first half of FY08

Conclusions

- Lucretia is a way-cool Matlab based simulation tool for LET studies
 - Fanatical user base
 - "Cult of Lucretia"
 - Expanding role in ATF2 studies / commissioning
- Several new features planned for FY08
 - Field maps for IR solenoids
 - Some sort of representation for undulator
 - UAP support
 - Better documentation for new users
- Other things we might need to do
 - Improved cavity representation
- Things we could do but probably won't
 - Octave version