

Beam dynamics issues in RTML

Nikolay Solyak Fermilab

LET meeting, SLAC, Dec 11-14, 2007

Global Design Effort

1

Wrap-Up from RTML KOM (PT)

- RTML is a large system by any standard
 - Total length > ILC footprint

jįĮ.

- Total number of components enormous
- Combined e+,e- RF systems
- Impressive amount of design work done for RDR, nonetheless...
- ... Technical maturity of RTML design is lagging
 - Missing or incomplete beamlines
 - Performance studies out of date and inadequate
 - Area, Technical, Global, Cost information are not consistent with each other
 - Many hardware performance specifications unknown
 - Required functions of various subsystems not reviewed

More work was done after RTML KOM. Latest results are presented at this LET face-to-face meeting

- Goal of EDR RTML work packages
 - Address to solve Valuable Risk, Design and Cost issues
- Working assumptions for RTML WP's
 - Not cover work already covered by ML or other technical groups, unless RTML requirements are different from their needs
 - Cavities, Cryomodules, HLRF, LLRF, Cryogenic
 - Most diagnostics: Laserwire, OTR, L-band BPM
 - Leading/coordination each WP by one person/one institution
 - Result oriented WP with goals/deliverables/milestones
 - Resources are limited
 - need priorities
 - wider geographic, new countries, institutions, groups

Structure of EDR Work packages in RTML

There are ten WP in RTML, among which there are nine technical WP while the first one is primarily managing and integration:

- 1. RTML group managing and Specs development
- ✓ 2. Engineering Lattice design
- ✓ 3. Accelerator physics
- ✓ 4. R&D on amplitude and phase stability in BC
 - 5. Alternative Ultra-short Bunch Compressor
 - 6. Magnets and power supplies
 - 7. Collimation system
 - 8. Beam dump system
 - 9. RTML Vacuum system
 - 10. RTML Instrumentation

- 1. RTML managing and Specifications development
 - Specs for all technical systems, CFS
- 2. Engineering Lattice design for EDR geometry
- 3. Accelerator Physics
 - Static Tuning study
 - Errors sensitivity study
 - Failure mode analysis
 - Magnetic stray fields studies
 - Space-charge effects studies
 - Study of beam halo in the RTML
 - Dynamic tuning. Specify and develop FB/FF system
 - Beam Loss and radiation load simulations (?)
 - Design, Specify MPS
- 4. R&D on phase stability in BC1/BC2 (beam timing)
 - Study at TTF2/DESY and ILCTA/FNAL

5. Alternative Ultra-short Bunch Compressor

- Lattice design
- Control of emittance growths
- Sensitivity studies on machine errors
- Cost estimation

6. Magnets and Power Supplies

- Design, specify & optimize DC conventional magnets
- Optimize number of types and apertures
- Design warm quads, bends and correctors
- Design and prototype BC wiggler wide aperture magnet
- Design, prototype quad/corrector for return line
- Design tune-up Septa and PS
 Design and Specify pulsed magnets
- Design tune-up extraction kickers and pulsers
- Design feed-back, feed-forward correctors and PS
- Design/prototype SC quad/corrector for BC1/BC2
- Design, specify SC solenoid
- Optimize PS and cabling
- Design, specify DC PS
- Design stable supports for magnets

7. Collimation system

- Optics design
- Theoretical and computer simulations of wakefields
- Engineering design of the collimator

8. Beam Dump system (six in RTML, 5-15 GeV; 220kW)

- Energy deposition and radiation shielding simulations
- Engineering design of the dump
- Design / costing handling system

9. RTML Vacuum system

- Engineering design of the vacuum system in RT transport line
- Impedance design of vacuum system
- Cost estimation

10. RTML Instrumentation

- Specify Instrumentation requirements, interfaces, locations
- Specify warm BPMs
- Alignment system design
- Design of FB/FF system

RTML Work Packages (EOI)

Confirmed or requested Effort													
WP	WP Title	ANL	Cornell	FNAL	SLAC	UBC Canada	STFC UK	DESY	Russia	KEK Japan	IHEP China	KNU Korea	India
1	RTML managing and Spec. development		x										
2	Engineering Lattice design		x										
3	Accelerator Physics			?	x								
4	R&D on amplitude and phase stability in BC			x								?	
5	Alternative Ultra-short Bunch Compressor									?		x	
6	Magnets and PS			x									
7	Collimation system						x						
8	Beam Dump system				x								?
9	Vacuum system	x							?				
10	Instrumentation			x									

* Preliminary Table, Not confirmed by all institutions/groups yet

LET meeting, SLAC, Dec 11-14, 2007

How to organize/coordinate Work on Accelerator Physics Simulations in RTML area system? This is a subject for discussion on this meeting.

- Work items related to (almost) one single area are under Area Groups (RTML, ML or BDS)
- Basically, inter area work items are under Simulations Group.
- All LET beam dynamics simulation workers should be in Simulations Group and closely communicate each other.
- Important simulation results should be cross checked by more than one group.

Accelerator Physics Issues

- RTML Lattice Design/Revision (is not RTML WP only)
 - Baseline RTML Lattice SLAC (PT), Cornell, ...
 - Alternative BC KNU (Korea), Cornell, SLAC, KEK,...
- Static Tuning SLAC*, Cornell, KEK, CRN, DESY, FNAL(?)
 - Demonstrate required emittance budget
 - Concentrate on most critical systems (BC)
 - Develop and document BBA strategy
 - Error sensitivity studies (similar to ML)
 - Failure mode analysis (BPM, Correctors, ...)
 - Cross-checking all results by other groups is essentially important
- Stray Magnetic fields FNAL, SLAC(?), KNU,...
 - Study correlated and uncorrelated sources of magnetic field
 - Develop models for beam simulation
- Space-charge effects studies FNAL, Dubna, Cornell (?), ...
- Beam halo in the RTML Cornell, ...
- Dynamic tuning. Specify and develop FB/FF system SLAC, Cornell, KEK, CERN, DESY
- Beam Loss and radiation load simulations FNAL, SLAC(?), ...
 - Beam Dumps, Collimators, stoppers
- Design, Specify MPS

ILC Lattice Files Punch List (PT, Dec.2007)

1. Definite Changes for Conformity with RDR

ERTML/PRTML -- VDOG from e- DR elevation to EGETAWAY/PGETAWAY(ceiling) elevation missing ERTML/PRTML -- x separation EGETAWAY/PGETAWAY vs PSOURCE/ESOURCE incorrect ERTML/PRTML -- escalator position and angle not consistent with PSOURCE/ESOURCE (see above) ERTML/PRTML -- horizontal dogleg into linac tunnel needed (see item above) ERTML -- 5 GeV beamline should be further from linac axis than PSOURCE, opp of CES drawings ERTML/PRTML -- 3 dumplines not yet in production

2. Items Which Must be Checked for Conformity with RDR

ERTML/PRTML – straight, curved sections of RETURN line match straight, curved sections of ML/BC ERTML/PRTML -- vertical dispersion match in ERETURN/PRETURN ERTML/PRTML -- offset of ETURN/PRETURN HDOG and VDOG All areas:

- -- are pulsed extraction lines present?
 - -- are aisleways maintained?
 - -- do coexisting beamlines fit in same tunnel given expected tunnel diameter?
 - -- directions of bending of various arcs

3. Changes Required for Conformity With Deckmastering Standards

All areas -- use common, CALL'ed definitions file to load CM and other common element definitions

4. Cost-Neutral, Performance-Enhancing Changes

ERTML / PRTML -- improve beta / eta matching in all areas

5. Changes which Impact Cost and Performance

ERTML/ PRTML -- reduce packing fraction in dense areas to something achievable

LET meeting, SLAC, Dec 11-14, 2007 **Global Design Effort**

LET meeting, SLAC, Dec 11-14, 2007

Global Design Effort

Emittance Preservation (PT, RTML KOM)

Sources of luminosity degradation we've Sources we haven't thought thought about enough about - Synchrotron radiation - Space charge (recent • From DRX arc, turnaround, BC wigglers **FNAL results**) Beam-ion instabilities - Resistive wall wakes in – Beam jitter vacuum chamber • From DR • From stray fields - Dispersion DR extraction Summary of studies done at Misaligned guads RDR stage was presented Rolled bends by PT at RTML Kick-Off – Coupling Meeting, Sept 27-29, 2007. DR extraction septum • Rolled guads Misaligned bends http://ilcagenda.linearcollider Quad strength errors in spin rotator .org/conferenceDisplay.py?c – Pitched RF cavities (BC) onfld=1851 • Produce time-varying vertical kick – RF phase jitter (BC) Varies IP arrival time of beams Beam halo formation Collimator Wakefields

Short Summary

- Synchrotron Radiation
 - Mainly managed by optics design, 0.9 µm emittance growth in x, Vertical bends negligible, Analytic estimates indicate no CSR issues
- Beam-ion instabilities
 - Sets 20 nTorr pressure limit in Return line (Limits jitter growth to 9%)
- Beam Jitter
 - Handled by FF in turnaround and living clean
 - Sets limits on tolerable AC fields in Return line ~ 2 nTesla limit
- Halo formation
 - Sets 100 nTorr vacuum spec downstream of Return line (10⁻⁶ halo formation)
- Collimator Wakefields
 - Y wakes seem marginal for "razor blade" collimators.
 - Probably OK for tapered collimators
 - Need to revisit this issue! (incl. Resistive wakes of absorbers, etc)
- Dispersion
 - Local correction via steering / orbit control (BBA: BPM,Ycorr in each quad)
 - Global correction via normal / skew quads in locations with dispersion
 - DRX arc; Escalator; Turnaround, BC1 / BC2 wigglers

Short summary (2)

- Coupling
 - Global correction via orthonormal skew quads
 - Two decoupling systems: After DRX arc, After spin rotator
- Pitched RF cavity
 - Global correction via BC dispersion knobs
 - YZ coupling (pitch) + ZE coupling (off-crest running) = YE coupling (dispersion)
- How well can we correct dispersion, coupling, cavity pitch?
 - Studies with 2006 optics + Return line OK except for BC1 cavity pitch
 - Can get in the realm of RTML emittance budget (4 nm vertical growth, 90% CL)
 - BC1 cavity pitches blew budget by ~ factor of 2
 - Preliminary result no attempt to improve upon this was made!
 - Need to revisit in a more complete manner with up-to-date optics
 - Likely to get worse

Will see updates of Emittance simulations on this meeting

WP 3.2: Stray Magnetic Field studies

RTML needs to transport low-emittance 5 GeV beam over ~15 km from DR to ML. Requirement on stray magnetic fields in the RTML is less than 2 nT.

Proposal summary (2years):

- Evaluate possible sources of the stray fields, correlated and uncorrelated with the beam.
- Survey the existing sites to verify assumptions in that analysis (FNAL, DESY, SLAC, CERN)
- If the result of this study would require, propose shielding approach for the beam pipe.
- Develop a stray field model suitable for linac simulation frameworks.

Deliverables:

- A comprehensive analysis of the effects of stray magnetic fields on RTML.
- Design, build and test a low-magnetic field, broadband survey system.
- Survey sites: Fermilab, CERN, SLAC, and other sites representative of ILC environment. The data will be available via WWW.
- Parametrical model of stray magnetic fields for Acc. Physics simulations
- A design recommendation for RTML line, RF system
- Results published in ILC report and presentation at the appropriate conferences

<u>Personnel:</u> Total effort is 0.5 FTE of R&D personnel and 0.25 FTE of support (electronics, mechanics)

Equipment (Magnetometers, PS, amplifiers, cables, GPIB and DAC): ~17k\$

Stray Magnetic Fields Studies (cont.)

Previous work

- "Sensitivity to Nano-Tesla Scale Stray Magnetic Fields", published by J. Frisch, T. Raubenheimer, P. Tenenbaum, SLAC, LCC Note-0140 (June 7, 2004)
 - Analysis for NLC
 - Data from SLC (End station B)
 - Conclusion: we are mostly OK
- Rough estimation of effects of fast changing stray field in long transport of RTML – "Emittance dilution in Turnaround", K. Kubo, KEK, ILC-Asia-2006-05 October 12, 2006
 - Requirement for high frequency stray magnetic fields (estimation): rms B < 2 nano-Tesla (ILC RDR)

Magnetic field examples

- Commercial SC solenoid
- Earth magnetic field
- Cell phone
- ILC RDR requirement
- Beating human heart

- 10 Tesla (1 e+1)
- 50 micro-Tesla (5 e-5)
- 100 nano-Tesla (1 e-7)
- 2 nano-Tesla (2 e-9)
- ~ 10 pico-Tesla (1 e-11)

Frequency dependence

- < 0.1 Hz (can be compensated by control system)
- > 100 kHz (attenuated in the structure)

Classification (following F.R.T.)

- 60 Hz and its harmonics (near-coherent with 5-Hz pulsing)
- Fields from RF systems (coherent with 5-Hz pulsing)
- Others (non-RF technical sources) (uncorrelated with pulses)

Tom Van Baak: <u>http://www.leapsecond.com</u>

LET meeting, SLAC, Dec 11-14, 2007

Global Design Effort

- It is proposed to make direct measurements of the phase and amplitude stability of the RF system of the TTF-2 operating close to zero crossing.
- > The required tolerances for amplitude and phase stability in BC are very tough:
 - Phase stability tolerance: 0.25°/0.16° rms @1.3 GHz –long/short bunch
 - Amplitude stability tolerance: 0.5%/0.35% rms long/short bunch
- Bunch compressor RF cavities operate close to zero-crossing:
 - Phase 105° off-crest (first stage), beam decelerates
 - Phase 27.6° off-crest (second stage)
- The gradient in the RF system ~30 MeV/m. The beam loading in the RF system operating close to zero crossing is primary reactive. In this case the LLRF feed-forward system may operate in quite different regime than for acceleration.
- TTF2 measurements will allow to check whether existing LLRF system meets the RF phase/amplitude stability requirements for the beam near zero-crossing
- The beam energy after pre-accelerator is 40 MeV

• Use the two cryo-modules, fed by separate klystrons in counterphase to exclude bunch arrival jitter, caused by the laser, RF gun and pre-accelerator (T.Himel, PT)

Schematic of the bunch arrival jitter compensation. The two RF modules RF1 and RF2 are operating in counter-phase near the zero crossing.

- Use ACC3 and ACC4 (AAC2, ACC5, and ACC6 are detuned), excited with the same amplitude, but in counter-phase, adjusted for a beam near zero crossing;
- Other regime: (ACC2+ACC3) and (ACC4+ACC5). Better resolution
- Dipole magnets of the BC2 are to be switched off (re-adjust beam optics)
- The beam energy fluctuations caused by RF amplitude/phase instability will be determined by measuring of the beam transverse position by stripline BPMs after ACC6, where dispersion is high enough.

Figure 1: Schematic of the FLASH facility and of the BPM types built in

LET meeting, SLAC, Dec 11-14, 2007

Global Design Effort

200 pulses: Data/2006-12-05T102758/

WP5: Alternative Bunch Compressor

- An alternate bunch compressor design exists
 - 6-cell wigglers (~150 m each, 102 bend magnets) replaced by chicanes (~40 m each, 4 bend magnets) – (En-san Kim)
 - Advantages Shorter, Simpler, Cheaper (?)
 - Disadvantages:
 - Big x offset from straight line (~1.8 m)
 - Doesn't have natural locations for dispersion tuning quads
- Need carefully evaluate the two existing BC schemes
 - Maybe neither one is optimal?

Summary

- Emittance preservation in RTML is one of the major risks for delivering luminosity in IL
- EDR Working packages are aiming to solve most critical issues to reduce risk, improve performances and reduce cost by better design, simulations, value engineering, needed R&D program.
- WP's related to RTML Lattice design, Accelerator Physics simulations and R&D programs are in a few groups: RTML, Lattice integration, Acc. Physics Simulation Groups. We need good collaboration and communication between to achieve EDR goals.