

Science & Technology Facilities Council Laser-wire Model for BDS+Linac

Grahame Blair SLAC

10th December 2007

- Introduction
- Overview of errors
- Ongoing technical work in this area
- Linac simulations
- Plans for the future.

Beam Size Monitor Model

Requirements:

- Simple to use system as input to machine tracking codes
- Complex system for full LW simulations
- Possibly combine the two approaches with flags/defaults.

Inputs:

- Laser parameters
- LW laser-optics performance
- Detector locations and efficiencies (non trivial in ILC BDS)
- Required use: bunch-by-bunch or train-by-train; or other?

Laser-wire People

BESSY: T. Kamps

DESY : E. Elsen, H. C. Lewin, F. Poirier, S. Schreiber, K. Wittenburg, K. Balewski

- JAI@Oxford: B. Foster, N. Delerue, L. Corner, D. Howell, L. Nevay, M. Newman, A. Reichold, R. Senanayake, R. Walczak
- JAI@RHUL: G. Blair, S. Boogert, G. Boorman, A. Bosco, L. Deacon, P. Karataev, S. Malton , M. Price I. Agapov (now at CERN)
- KEK: A. Aryshev, H. Hayano, K. Kubo, N. Terunuma, J. Urakawa
- SLAC: A. Brachmann, J. Frisch, M. Woodley

FNAL: M. Ross

Laser-wire Principle

The true emittance is 0.079 μm μrad

Skew Correction

$$\phi_{\text{optimal}} = \tan^{-1} \left(\frac{\sigma_x}{\sigma_y} \right)$$

$$\approx 68^{\circ} - 88^{\circ}$$
 at ILC

ILC LW Locations $E_b = 250 \text{ GeV}$

σ _x (μm)	σ _y (μm)	¢ _{opt} (°)	σ _u (μm)
39.9	2.83	86	3.99
17.0	1.66	84	2.34
17.0	2.83	81	3.95
39.2	1.69	88	2.39
7.90	3.14	68	4.13
44.7	2.87	86	4.05

Error on coupling term:

$$\delta \langle xy \rangle = \sigma_x \sigma_y \left[4 \left(\frac{\delta \sigma_u}{\sigma_u} \right)^2 + \left(\frac{\delta \sigma_x}{\sigma_x} \right)^2 + \left(\frac{\delta \sigma_y}{\sigma_y} \right)^2 \right]^{\frac{1}{2}}$$

Machine Contributions to the Errors

$$\sigma_{e} = \begin{bmatrix} \sigma_{\text{scan}}^{2} - (\alpha_{J}\sigma_{e})^{2} - (\eta\delta_{E})^{2} \end{bmatrix}^{\frac{1}{2}}$$

Bunch Jitter
$$\frac{\delta\sigma_{e}}{\sigma_{e}} \approx 5 \times 10^{-2} \left(\frac{\alpha_{J}}{0.5}\right)^{2} \left(\frac{\sigma_{\text{BPM}}}{100\text{nm}}\right)$$
Dispersion

BPM resolution of 20 nm may be required

Assuming η can be measured to 0.1%, then η must be kept < ~ 1mm

$$\frac{\delta \sigma_e}{\sigma_e} \approx 2.3 [\eta / \text{mm}]^2 \left(\frac{\langle \delta \eta \rangle}{\eta}\right)$$

Alternative Scan Mode

- R&D currently investigating ultra-fast scanning (~100 kHz) using Electro-optic techniques
- Alternative: Keep laser beam fixed and use natural beam jitter plus accurate BPM measurements bunch-by-bunch.
 Needs the assumption that bunches are pure-gaussian
- For one train, a statistical resolution of order 0.3% may be possible

Compton Statistics

$$N_{\text{Detected}} = 1212\xi \frac{1}{\sqrt{2\pi\sigma_m}} \exp\left(-\frac{1}{2}\left[\frac{\Delta_y}{\sigma_m}\right]^2\right)$$

Approximate – should use full overlap integral (as done below...)

TM₀₀ Mode Overlap Integrals

Main Errors:

- Statistical error from fit ~ $\xi^{-1/2}$
- Normalisation error (instantaneous value of ξ) assume ~1% for now.
- Fluctuations of laser M² assume M² known to ~1%
- Laser pointing jitter ψ

$$\frac{\delta \sigma_e}{\sigma_e} \approx 2.2 \times 10^{-3} \left(\frac{\psi}{10\,\mu \text{rad}}\right)^2 \left(\frac{\delta \psi}{\psi}/10\%\right)$$

$$\frac{\delta \sigma_e}{\sigma_e} \approx \left(\frac{\lambda f_{\#}}{\sigma_e}\right)^2 M^2 \left(\frac{\delta M^2}{M^2}\right)$$

Laser Requirements

Wavelength	\leq 532 nm
Mode Quality	≤ 1.3
Peak Power	\geq 20 MW
Average power	≥ 0.6 W
Pulse length	≥ 2 ps
Synchronisation	\leq 0.3 ps
Pointing stability	\leq 10 μ rad

ILC-spec laser is being developed at JAI@Oxford based on fiber amplification. L. Corner et al

TM₀₀ mode

- Optimal f-num \approx 1-1.5 for λ = 532nm
- Then improve M² determination
- f-2 lens about to be installed at ATF

ATF2 LW; aiming initially at f_2 ; eventually f_1 ?

Towards a 1 µm LW

preliminary Resultant errors/10⁻³

Goals/assumptions

Wavelength	266 nm
Mode Quality	1.3
Peak Power	20 MW
FF f-number	1.5
Pointing stability	10 μ rad
M ² resolution	1%
Normalisation (ξ)	2%
Beam Jitter	0.25σ
BPM Resolution	20 nm
Energy spec. res	10-4

	Ε _ξ	2.5	
	E _{point}	2.2	
	E _{jitter}	5.0	
	E _{stat}	4.5	
	E _M ²	2.8	
	Total Error	8.0	
F	inal fit, inclue	ding	dispersion
Could be	e used for η r	neas	urement
$ \rightarrow \mathbf{L}_n $			

PETRA LW

Routine scans of two-dimensions were achieved PETRAII programme now finished; preparing for PETRAIII Fast scanning system with 130kHz laser at RHUL planned Collaborating with DESY on fast DAQ Look forward to installation in new location for PETRAIII next year

PETRA II

ATF LW

Tests of f₂ lens system currently underway at Oxford

We have improved mode quality Of ATF laser at KEK in October 2007.

Look forward to running with f2 optics in Dec 07 and in 2008.

quad scan using LW scans

ATF2 Laser-wire

• An additional LW location has been reserved downstream for multi-axis scans \rightarrow LC-ABD-II

ATF/ATF2 Laser-wire

- At ATF2, we will aim to measure micron-scale electron spotsizes with green (532 nm) light.
- Two locations identified for first stage (more stages later)
 - 1) 0.75m upstream of QD18X magnet
 - 2) 1m downstream of QF19X magnet

Nominal ATF2 optics	LW-IP (1)	LW-IP (2)
	σ _x = 38.92 μm	σ _x = 142.77 μm
	σ _y = 7.74 μm	σ _y = 7.94 μm

ATF2 LW-test optics	LW-IP (1)	LW-IP (2)
D. Karataay	σ _x = 20.43 μm	σ _x = 20 μm
F. Nalalaev	σ _y = 0.9 μm	σ _y = 1.14 μm

 \Rightarrow Ideal testing ground for ILC BDS Laser-wire system

BDS Laser Wire Electrons

Laser Wire Electrons no vacuum window

Showering in beampipe seriously degrades the signal A vacuum window, similar to that foreseen for polarimeter will be included in future simulations Such a window is clearly needed

Laser Wire Electrons no vacuum window

Laser Wire Electrons no vacuum window

- 10 trials, 1000 compton events per trial. Results:
- Mean energy = 1830 GeV
- Mean number of particles = 554
- RMS energy = 566= 30%
- RMS number of particles = 168 = 30%

Laser Wire Photons no vacuum window

- Particles have to go through beam pipe at small angle so they have to pass through a lot of material
- Illustration: particles
 shower inside beam pipe

viewer-0 (OpenGLImmedia	ateX)	

A vacuum window is also required – but space is very tight in this region: only a mm or two of clearance between Compton photons and beampipe

Laser Wire Photons no vacuum window

Laser Wire Photons no vacuum window

Deacon

- 10 trials, 1000 compton events per trial. Results:
- Mean energy = 388 GeV
- Mean number of particles = 254
- RMS energy = 172= 44%
- RMS number of particles = 113 = 44%

Linac Module

The ILC linac
 module has been
 modelled in BDSIM

*****	10100101 101001001	****	*****	*****	****

Linac

- The linac comprises a string of these modules with vertical dipoles between them. Linac follows Earths curvature.
- Preliminary results for laser wire signal extraction: assuming particles can be detected once they exit the cavity (y>34mm), largest signal is obtained by placing a detector after the 51st cryomodule, z ~ 650m
- End plate of 4cm steel was set in front of detector.
- For 2×10^{10} electrons per bunch, total extracted energy per bunch is $(3.2\pm0.3) \times 10^{10}$ GeV
- Initial energy per bunch ~ 2.5 × 10¹² GeV, so ~ 1.3 % of the signal energy is extracted

Particles detectable above this line

Summary

- Very active + international programme:
 - Hardware
 - Optics design
 - Advanced lasers
 - Emittance extraction techniques
 - Data taking + analysis
 - Simulation
- A useful model will include effects:
 - Laser pointing
 - M² monitoring
 - Low-f optics
 - Fast scanning
 - High precision BPMs
- BDSIM already contains a simple LW generator
 - What other formats are required?
 - Additional benchmarking can be done at PETRA/ATF.
 - ILC linac studies have started; signal extraction is an issue

